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Lecture Aims

Throughout this course, we have presented a framework for developing and studying
algorithms for multi-agent optimization and learning, in a manner that is unified and
extendable.

In this lecture, we illustrate this by presenting three extensions in the directions of:
▶ Multi-task and meta-learning
▶ Compressed learning
▶ Private learning
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Multi-Task Learning
Up to this point, in the context of distributed learning algorithms, we have exclusively focused
on consensus optimization problems of the form:

wo ≜ arg min
w∈RM

K∑

k=1

Jk(w) (1)

Since the resulting model wo is unaffected by normalization, it can be viewed as the best
average model for the aggregate objective 1

K

∑K
k=1 Jk(w). We can distinguish the consensus

problem from non-cooperative problems:

wo
k = arg min

wk∈RM
Jk(wk) ⇐⇒ Wo ≜ arg min

W∈RMK

K∑

k=1

Jk(wk) (2)

Since the local objectives are independent between agents, the locally optimal models wo
k can

be pursued in a non-cooperative manner by each individual agent using deterministic or
stochastic gradient recursions.
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Single-Task versus Multi-Task Learning

In a heterogeneous setting, we can distinguish two overarching network objectives:

Single-task learning: Agents are interested in finding a common wo:

wo ≜ arg min
w∈RM

K∑

k=1

Jk(w) (3)

Multi-task learning:1 Agents are interested in finding a locally optimal model wo
k, but

would like to collaborate if it helps them in their own objective:

wo
k = arg min

wk∈RM
Jk(wk) (4)

Our algorithms and analysis thus far has focused on finding a common wo.

1Multi-task learning is also known in some communities as “personalized learning”.
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Multi-task learning paradigms

Figure: Examples of network learning paradigms. (Left) Single-task network. (Middle) Clustered
multitask network. (Right) Multitask network.
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Parametric multi-task learning

Parametric multitask learning: Parametric approaches for multitask learning impose a prior
on the relationship between objectives Jk(w) or the optimal local models wo

k. These priors are
generally informed by domain knowledge, physics, or outside information, and drive the
cooperation between agents. Parametric approaches for decentralized multitask learning will
relax the aggregate optimization problem to:

Wo
η = arg min

W∈RMK

K∑

k=1

Jk(wk) + ηR(W), s.t. W ∈ Ω (5)
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Generic Structure of Parametric Multi-Task Learning Algorithms

Figure: A generic structure for decentralized parametric multi-task learning algorithms. It involves two
steps, a self-learning step based on locally available data and a social learning step tuned to the
underlying task-relatedness model.
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Example: Multi-Task Learning with a Smoothness Prior

Recall the penalized approximation to the single-task problem, which we encountered in
Lecture 4:

argmin
W

K∑

k=1

Jk(wk) +
η

2
WT LW (6)

In Lecture 4, where the objective was single-task optimization, we argued that this only results
in a consensual solution when η → ∞. Motivated by this observation, we set η = µ−1, which
ensures that η → ∞ for small step-sizes µ. If we don’t want to enforce exact consensus, we
can leave η as a hyperparameter.

Algorithms for (6) are developed using the same techniques as we discussed in Lecture 4.
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Performance of Multi-Task Learning with a Smoothness Prior

Figure: Performance of a diffusion-type multi-task learning algorithm for varying choices of η.
Analytical expressions for this curve are available in [Nassif et al., 2020].
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Application in Weather Prediction

Suppose we would like to predict tomorrow’s weather in different regions of the United States,
based on a variety of different meteorological factors such as temperature and humidity.
Whether it will rain on the following day can then be encoded in a binary class variables
γk = ±1, and the available measurements in a feature vector hk. We may then formulate a
rudimentary linear weather model by training a logistic regression classifier locally:

wo
k ≜ argmin

wk

E ln
(
1 + e−γkh

T
kwk

)
+

ρ

2
∥wk∥2 (7)

Since weather patterns are likely to be similar in nearby geographical regions, we may also
envision a distributed learning schemes, where we encourage smoothness in the local weather
models wo

k, resulting in:

Wo
η ≜ argmin

W

K∑

k=1

(
E ln

(
1 + e−γkh

T
kwk

)
+

ρ

2
∥wk∥2

)
+

η

2
WT LW (8)
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Application in Weather Prediction

Figure: Weather prediction using multitask learning with smoothness prior [Nassif et al., 2020]. (Top left)
Actual occurrence of rain. (Top right) Predicted occurrence of rain. (Bottom) Prediction accuracy as a
function of the regularization parameter η of (6).
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Subspace Constrained Multi-Task Learning

An alternative model-based setting may be one where tasks are not necessarily smooth over
the graph, but instead linearly related, i.e., W ∈ Range(U) for some U .

Wo = argmin
W

K∑

k=1

Jk(wk) s.t. W ∈ Range(U), (9)

where Range(·) denotes the range space operator, and U is an KM × P full-column rank
matrix with P ≪ KM .
Note: We can actually recover the consensus problem (1) from (9) by setting U = 1⊗ IM .
This is because for any x:

W = (1⊗ IM )x ⇐⇒ wk = wℓ (10)
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Example: Linearly-coupled optimization
Consider a setting where each agent k is estimating a subset of the global weight vector
w = [w1, w2, w3], with potential overlap among agents.
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Figure: (Left) Consensus network and associated subspace matrix U . (Right) Linearly coupled network
and associated subspace matrix U .
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Application: Decentralized Beamforming
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Figure: (Left) Uniform linear array of K antennas. (Right) Comparison of output SINR [Nassif et al., 2020].
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Non-Parametric Multi-Task Learning via Meta-Learning

Instead of directly modeling the relationship between tasks wo
k and wo

ℓ , in model-agnostic
meta-learning one assumes that both one or several (stochastic) gradient step away from a
common launch-model:

wo
k ≈ wo − µ∇wQ(wo;xk) (11)

One then optimizes:

wo ≜ argmin
w

1

K

K∑

k=1

EQ(w − µ∇wQ(w;x1
k);x

2
k) (12)

to determine a common launch model wo, which adapts quickly to other tasks wo
k via one or

several (stochastic) gradient steps.
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Dif-MAML: Decentralized Meta-Learning
If we denote:

Q(w;x1
k,x

2
k) ≜ Q(w − µ∇wQ(w;x1

k);x
2
k) (13)

then the optimization problem

wo ≜ argmin
w

1

K

K∑

k=1

EQ(w;x1
k,x

2
k) (14)

is a single-task problem over the common launch model w, and can be pursued via any of the
decentralized algorithms we have encountered so far. For example, using diffusion:

ϕk,i =wk,i−1 − µ∇Q(wk,i−1;x
1
k,i,x

2
k,i)

=wk,i−1 − µ∇Q(wk,i−1 − µ∇wQ(wk,i−1;x
1
k,i);x

2
k,i) (15)

wk,i =
∑

ℓ∈Nk

aℓkϕℓ,i (16)
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Application to ImageNet

Figure: Performance of diffusion-based decentralized model-agnostic meta-learning on the ImageNet
dataset [Kayaalp, Vlaski and Sayed, 2022].
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Compressed Learning
Whenever messages are sent over a bandwidth-constrained communication channel, this will
inevitably be associated with imperfections in the exchanged messages, which can be modelled
as noise. We illustrate this on the diffusion algorithm again, though similar constructions apply
to other decentralized algorithms we have encountered. Recall:

ψk,i = wk,i−1−µ∇̂Jk(wk,i−1) (17)

wk,i =
∑

ℓ∈Nk

aℓkψℓ,i (18)

Agents in this framework exchange intermediate estimates ψk,i. In a digital communication
setting, this is achieved by quantizing the vector ψk,i for a given bit-budget, and subsequently
communicating the bit-representation of ψk,i. We employ the notation Qk(·) for the general
quantization scheme employed by agent k, and can then write:

ψk,i = wk,i−1−µ∇̂Jk(wk,i−1) (19)

wk,i =
∑

ℓ∈Nk

aℓkQℓ

(
ψℓ,i

)
(20)
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Quantizer Conditions

Quantizer Conditions

The random quantization schemes Qk(·) are unbiased, i.e.:

E
{
Qk(ψk,i)|ψk,i

}
= ψk,i (21)

Furthermore, the variance of the quantization error satisfies the bound:

E
{∥∥ψk,i −Qk(ψk,i)

∥∥2|ψk,i

}
≤ β2

k,q∥ψk,i∥2 + σ2
q,k (22)

Comparing the quantizer conditions (21)–(22) with our typical gradient noise conditions, we
observe the same structure with a relative component proportional to the norm of the
quantized quantity, and an absolute component.
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Impact on Performance
We can interpret the quantization noise as a contributor to the stochastic gradient
approximation:

sQk,i(wk,i−1) = sk,i(wk,i) +
1

µ

(
Q(ψk,i)−ψk,i

)
(23)

It then follows from the results in Lecture 5 that:

lim sup
i→∞

E∥w̃k,i∥2 ≤ O

(
µ
∑K

k=1 σ
2
k

K2ν

)
+O

(
µ−1

∑K
k=1 σ

2
q,k

K2ν

)
+O(µ2) (24)

In a homogeneous setting we recover:

lim sup
i→∞

E∥w̃k,i∥2 ≤ O

(
µσ2

Kν

)
+O

(
µ−1σ2

q

Kν

)
+O(µ2) (25)

The result scales very poorly with the step-size µ.
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Differential Quantization

For small step-sizes, however, models are updated slowly, and hence there is significant
correlation between subsequent model estimates. This motivates the introduction of
differential quantization schemes, which quantizes the model updates instead of the models
directly. As an example, we consider the algorithm from [Nassif et al, 2024]:

ψk,i =wk,i−1 − µ∇̂Jk(wk,i−1) (26)

ϕk,i = ϕk,i−1 +Qk(ψk,i − ϕk,i−1 + zk,i−1) (27)

wk,i = (1− γ)ϕk,i + γ
∑

ℓ∈Nk

aℓkϕℓ,i (28)

where

zk,i = (ψk,i − ϕk,i−1 + zk,i−1)−Ck(ψk,i − ϕk,i−1 + zk,i−1) (29)
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Performance with Differential Quantization and Error Feedback

Adopting similar analysis techniques to the ones we saw in lectures, we find:

lim sup
i→∞

E∥wk,i−wo∥2 = O

(
µσ2

νK

)
+O(σ2

q ) (30)

We can achieve σ2
q = O(µ2) with O(1)-bits on average using a variable-rate quantizer (this

requires proof [Nassif et al, 2022]).
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Numerical Results

Figure: The proposed scheme matches that of an unquantized architecture despite the use of finite-bit
quantization [Nassif et al, 2024]
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Privacy
We begin with the observation that models and gradients can leak private information: For the
mean squared error, for example, where:

Jk(w) = EQ(w;xk) = E
1

2

(
γk − hT

kw
)2

(31)

we have:

∇̂J
ele

k (w) = ∇wQ(w;xk) = −hk

(
γk − hT

kw
)

(32)

For the logistic regression problem on the other hand, where:

Jk(w) = EQ(w;xk) = E ln
(
1 + e−γkh

T
kw
)
+

ρ

2
∥w∥2 (33)

we have:

∇̂J
ele

k (w) = ∇wQ(w;xk) = ρw − hk

1 + eγkh
T
kw

(34)
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Differential Privacy

Let us consider a collection of K agents indexed by k. Each agent has access to private data,
which we model through the random variable xk. Any agent will have the option of
participating in collaborative effort, which we describe generically as Alg (x1,x2, . . . ,xK).
Consider also an alternative scenario, where an arbitrary agent, let us say without loss of
generality, agent 1, refuses to participate in the learning protocol, and is replaced by some
other agent 1′ with different local data x1′ ∈ X from a set of permissible local data sets X .

ϵ-differential privacy

We say that an algorithm Alg (·) is ϵ-differentially private, if it holds that:

f (Alg (x1,x2, . . . ,xK))

f (Alg (x1′ ,x2, . . . ,xK))
≤ eϵ (35)

for all x1′ ∈ X , where f(·) denotes the probability density function of the argument.
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Example: Homogeneous Agents

Suppose the local data distributions are i.i.d, meaning x1 ∼ x2 ∼ . . . ∼ xK ∼ x1′ . It then
follows that:

f (Alg (x1,x2, . . . ,xK)) = f (Alg (x1′ ,x2, . . . ,xK)) (36)

and hence the procedure is 0-differentially private. This essentially formalized the fact that if
all information provided by agents is common knowledge, there is no privacy loss incurred by
any given agent’s participation.
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Sensitivity of an Algorithm

ℓ1-sensitivity

The sensitivity of Alg(·) is defined as:

∆ = max
x1′∈X

∥Alg (x1,x2, . . . ,xK)−Alg (x1′ ,x2, . . . ,xK) ∥1 (37)
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The Laplace Mechanism

Differential Privacy of the Laplace Mechanism

Suppose Alg(·) has ℓ1-sensitivity ∆, and define:

LAlg(·) = Alg(·) + vp (38)

where vp is a vector of suitable dimension Mv, where each entry follows the Laplace
distribution:

fvp(v) =
1

(2bv)Mv
e−

∥v∥1
bv (39)

Then, LAlg(·) is
(

∆
bv

)
-differentially private.
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Differential Privacy for Decentralized Learning

Motivated by this discussion, we can then consider the following variant of diffusion:

ϕk,i = wk,i−1−µ∇̂Jk(wk,i−1) (40)

ψk,i = ϕk,i−1 + vk,i (41)

wk,i =
∑

ℓ∈Nk

aℓkψℓ,i (42)

where vk,i follows a Laplace distribution. Note again we can interpret this as augmenting the
gradient noise to:

sprivk,i (wk,i−1) = sk,i(wk,i−1)−
1

µ
vk,i (43)
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Performance of the Naive Noise Addition

For small step-sizes this can result in serious amplification of the privacy noise component,
yielding:

σ2
k,priv = σ2

k +
σ2
v

µ2
(44)

where σ2
k denotes the absolute component of the gradient approximation ∇̂Jk(wk,i−1) and σ2

v

denotes the variance of the Laplacian privacy noise vk,i. We can then conclude from results in
Lecture 5, that the limiting performance of the privatized diffusion algorithm (for small
step-sizes) will be given by:

lim
i→∞

E∥w̃k,i∥2 = O(µσ2) +O
(
µ−1σ2

v

)
(45)

Again we observe very poor scaling with the step-size.
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Graph-Homomorphic Perturbations

The idea here will be to tune perturbations to the network topology in order to minimize their
impact on learning performance while preserving privacy. The first step is to allow

ϕk,i = wk,i−1−µ∇̂Jk(wk,i−1) (46)

ψkℓ,i = ϕk,i−1 + vkℓ,i (47)

wk,i =
∑

ℓ∈Nk

aℓkψℓk,i (48)
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Graph-Homomorphic Perturbations
For the network centroid, we have:

wc,i ≜
1

K

K∑

k=1

wk,i

(48)
=

1

K

K∑

k=1

K∑

ℓ=1

aℓkϕℓ,i +
1

K

K∑

k=1

K∑

ℓ=1

aℓkvℓk,i

=
1

K

K∑

ℓ=1

(
K∑

k=1

aℓk

)
ϕℓ,i +

1

K

K∑

ℓ=1

K∑

k=1

aℓkvℓk,i

(a)
=

1

K

K∑

ℓ=1

ϕℓ,i +
1

K

K∑

ℓ=1

K∑

k=1

aℓkvℓk,i

(46)
= wc,i−1−

µ

K

K∑

ℓ=1

∇̂Jk(wk,i−1) +
1

K

K∑

ℓ=1

K∑

k=1

aℓkvℓk,i (49)
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Graph-Homomorphic Perturbations

Graph-Homomorphic Perturbations

A set of perturbations vℓk,i is homomorphic for the the graph defined by the adjacency matrix
A ≜ [aℓk] if it holds with probability one that:

1

K

K∑

ℓ=1

K∑

k=1

aℓkvℓk,i = 0 (50)

Let each agent ℓ sample independently from the Laplace distribution v′ℓ,i ∼ Lap (0, bv) with

variance σ2
v = 2b2v. Then, the construction:

vℓk,i =

{
v′ℓ,i, if k ∈ Nℓ and k ̸= ℓ,

−1−aℓℓ
aℓℓ

v′ℓ,i, if k = ℓ.
(51)

is homomorphic for the graph described by the symmetric adjacency matrix A = AT.
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Performance of Diffusion Algorithm with Graph-Homomorphic
Perturbations

The fact that the privacy noise is cancelled in the centroid subspace allows us to obtain
improved performance:

lim
i→∞

E∥w̃k,i∥2 = O(µσ2) +O
(
σ2
v

)
(52)

Complete cancellation does not occur, because gradients are still evaluated at individual
iterates. But the improvement is compared to O

(
µ−1σ2

v

)
is still substantial for small

step-sizes. Further improvement is possible with secure aggregation techniques.
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Performance

Figure: Performance of privatized variants of the diffusion algorithm. Taken from [Rizk, Vlaski, Sayed 2023].
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