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Lecture Aims

In the last lecture we derived a range of decentralized learning algorithms, which we
classified as penalty-based, primal-dual and gradient-tracking based.

We also derived incremental variants.

In this lecture, we will develop convergence guarantees for all of these algorithms, which
clarify the impact of:

▶ Bias-correction
▶ The step-size and gradient-noise
▶ Network connectivity
▶ Heterogeneity of local objectives
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Network Basis Transformation
When we studied the dynamics of decentralized averaging algorithms in Lecture 3, we found it
useful to separately study the evolution of the network centroid and that of each individual
agent’s deviation from the centroid. In the context of decentralized optimization algorithms,
we will employ the same kind of technique. We illustrate this in the context of the distributed
gradient descent algorithm, repeated here for reference in network quantities:

Wi = AT Wi−1−µ∇J (Wi−1) (1)

or in terms of node quantities:

wk,i =
∑
ℓ∈Nk

aℓkwℓ,i−1 − µ∇Jk(wk,i−1) (2)

For generality, we will allow for stochastic gradient approximations, resulting in:

wk,i =
∑
ℓ∈Nk

aℓkwℓ,i−1−µ∇̂Jk(wk,i−1) (3)

where we replaced the true gradient ∇Jk(wk,i−1) by its stochastic approximation

∇̂Jk(wk,i−1), and changed the iterates wk,i to utilize bold font since they are now random.
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Network Basis Transformation

In network notation, we can then write:

Wi = AT Wi−1−µ∇̂J (Wi−1) (4)

where we defined the network gradient approximation:

∇̂J (Wi−1) =


∇̂J1(w1,i−1)

∇̂J2(w2,i−1)
...

∇̂JK(wK,i−1)

 (5)
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Network Basis Transformation
Now recall from Lecture 3, that the weight matrix A, when generated from a strongly
connected graph, is primitive, and as a result has a very structured Jordan decomposition
decomposition A = VϵJV

−1
ϵ :

Vϵ =
[
p VR

]
, J =

[
1 0
0 Jϵ

]
, V −1

ϵ =

[
1T

V T
L

]
(6)

In this lecture, we will be employing symmetric combination matrices A = AT, in which case
the Jordan decomposition reduces to the eigendecomposition, and we can more simply write
A = V ΛV T with V TV = V V T = IK and:

V =
[

1√
K
1 V2

]
, Λ =

[
1 0
0 Λ2

]
(7)

The matrix Λ2, which corresponds to the Jordan matrix Jϵ, in (7) is now a diagonal matrix,
with λ2(A) through λK(A) on the diagonal and ρ(Λ2) < 1.

Stefan Vlaski and Ali H. Sayed Lecture 5: Performance and Trade-Offs IEEE ICASSP 2024 Short Course 5 / 52



Network Basis Transformation

Given the eigendecomposition of A, we can deduce the eigendecomposition of A = A⊗ IM
through the observation that:

A = V ΛV T ⇐⇒ A = (V ⊗ IM ) (Λ⊗ IM ) (V ⊗ IM )T = VΛVT (8)

where we defined:

V = V ⊗ IM (9)

Λ = Λ⊗ IM (10)
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Network Basis Transformation

We use V to define a basis transformation for the distributed gradient descent recursion (4):

VT Wi = VTAT Wi−1−µVT∇̂J (Wi−1)

(a)
= VTATVVT Wi−1−µVT∇̂J (Wi−1)

(b)
= VTAVVT Wi−1−µVT∇̂J (Wi−1)

(c)
= ΛVT Wi−1−µVT∇̂J (Wi−1) (11)

where (a) follows since V is orthogonal, (b) follows by symmetry of A and (c) employs the
eigendecomposition of A. If we define W′

i ≜ VT Wi, we can write:

W′
i = ΛW′

i−1−µVT∇̂J (Wi−1) (12)
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Network Basis Transformation
We find that the network basis transformation partially diagonalizes the network recursion,
since Λ = Λ⊗ IM is block-diagonal. We say “partially” here because (12) is still driven by the

term µVT∇̂J (Wi−1). We have:

VT Wi =

([
1√
K
1T

V T
2

]
⊗ IM

)
Wi =

[
1√
K
1T ⊗ IM

V T
2 ⊗ IM

]
Wi

=

[
1√
K

∑K
k=1wk,i

VT
2 Wi

]
(a)
=

[ √
Kwc,i

VT
2 Wi

]
(13)

where in (a) we defined the network centroid wc,i =
1
K

∑K
k=1wk,i. Hence, the first block

captures the dynamics of the network centroid. The second block VT
2 Wi also carries a useful

interpretation, as we see on the next slide.
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Deviation from the Centroid
Note that:

W′
i = VT Wi =⇒ V W′

i = VVT Wi = Wi (14)

and hence

Wi =
[

1√
K
1⊗ IM V2

]
W′

i

=
[

1√
K
1⊗ IM V2

] [ √
Kwc,i

VT
2 Wi

]
= (1⊗ IM )wc,i+V2VT

2 Wi

= 1⊗wc,i+V2VT
2 Wi (15)

After rearranging, we have:

Wi−1⊗wc,i = V2VT
2 Wi (16)

We see that VT
2 Wi captures information about the deviation of each agent wk,i from the

centroid wc,i.
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Network Basis Transformation
For the right-hand side, we have:[ √

Kwc,i

VT
2 Wi

]
=

[
IM 0
0 Λ2

] [ 1√
K
1T ⊗ IM

VT
2

]
Wi−1−µ

[
1√
K
1T ⊗ IM

VT
2

]
∇̂J (Wi−1)

=

[
1√
K
1T ⊗ IM

Λ2VT
2

]
Wi−1−µ

[
1√
K
1T ⊗ IM

VT
2

]
∇̂J (Wi−1)

=

 ( 1√
K
1T ⊗ IM

)
Wi−1

Λ2VT
2 Wi−1

− µ

 ( 1√
K
1T ⊗ IM

)
∇̂J (Wi−1)

VT
2 ∇̂J (Wi−1)


=

[
1√
K

∑K
k=1wk,i−1

Λ2VT
2 Wi−1

]
− µ

[
1√
K

∑K
k=1 ∇̂Jk(wk,i−1)

VT
2 ∇̂J (Wi−1)

]

=

[ √
Kwc,i−1

Λ2VT
2 Wi−1

]
− µ

[
1√
K

∑K
k=1 ∇̂Jk(wk,i−1)

VT
2 ∇̂J (Wi−1)

]
(17)
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Partially Decoupled Recursions
We observe that the transformed recursion partially decouples into two recursions:

√
Kwc,i =

√
Kwc,i−1−

µ√
K

K∑
k=1

∇̂Jk(wk,i−1) (18)

VT
2 Wi =Λ2VT

2 Wi−1−µVT
2 ∇̂J (Wi−1) (19)

We divide (18) by
√
K and find:

wc,i = wc,i−1−
µ

K

K∑
k=1

∇̂Jk(wk,i−1) (20)

VT
2 Wi =Λ2VT

2 Wi−1−µVT
2 ∇̂J (Wi−1) (21)

Examination of (20) reveals that the network centroid wc,i evolves almost as the centralized
stochastic gradient algorithm we studied in Lecture 1, except that stochastic gradient
approximations ∇̂Jk(wk,i−1) are evaluated at the local iterates wk,i−1 rather than the
centroid wc,i−1.
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Network Basis Transformation for Diffusion

Recall that we motivated in Lecture 4 the Adapt-then-Combine (ATC) diffusion algorithm by
employing an incremental variation of the argument that led to the distributed gradient
descent algorithm:

ψk,i = wk,i−1−µ∇̂Jk(wk,i−1) (22)

wk,i =
∑
ℓ∈Nk

aℓkψℓ,i (23)

We are again allowing for stochastic gradient approximations ∇̂Jk(wk,i−1). In terms of
network quantities, we have:

Wi = AT
(
Wi−1−µ∇̂J (Wi−1)

)
(24)
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Network Decomposition for Diffusion

Applying the same network basis transformation W′
i = VT Wi, and repeating the argument

that led to the decomposition (20)–(21), we find for the diffusion algorithm:

wc,i = wc,i−1−
µ

K

K∑
k=1

∇̂Jk(wk,i−1) (25)

VT
2 Wi =Λ2VT

2 Wi−1−µΛ2VT
2 ∇̂J (Wi−1) (26)

Note that the recursions for the network centroid (25) and (20) are identical. Second, the
recursions for the network deviation (26) and (21) are structurally similar, but distinguished by

an additional factor Λ2 multiplying the driving term −µΛ2VT
2 ∇̂J (Wi−1) in the case of the

diffusion algorithm. This factor results from the fact that the mixing operation in the case of
the diffusion algorithm is applied to both the weights themselves as well as the gradient
update. This subtle difference is the source of improved stability properties of incremental-type
algorithms.
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Network Decomposition for Penalty-Based Algorithms
We remark that the fact that the centroid recursions for distributed gradient descent and
diffusion algorithms are identical is a useful insight, but does not imply that the trajectories of
both centroids will be identical. This is because the centroid recursions are coupled with the
deviation recursions (26) and (21) through the iterates wk,i−1, where the gradient
approximations are evaluated. These distinctions will seep into the centroid recursions and
cause varying dynamics of the centroid as well. Nevertheless, the structural similarity of the
recursion allows us to formulate a general form of penalty-based algorithms, and develop
convergence analysis that will apply to both algorithms. In particular, we will study a
decomposition of the form:

wc,i = wc,i−1−
µ

K

K∑
k=1

∇̂Jk(wk,i−1) (27)

VT
2 Wi =Λ2VT

2 Wi−1−µDVT
2 ∇̂J (Wi−1) (28)

where we recover the distributed gradient descent algorithm by setting D = I, and the
diffusion algorithms by setting D = Λ2.
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Visualization of the Network Decomposition

Individual error dynamics Network error decomposition

Strong coupling of optimization and network effects

through the total individual errors

Weak coupling of optimization effect, which affects

primarily the centroid, and the network effect, which

affects primarily the local deviations from the centroid
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Perturbation Terms
To make the coupling explicit, we introduce the error terms:

sk,i(wk,i−1) ≜ ∇̂Jk(wk,i−1)−∇Jk(wk,i−1) (29)

dk,i−1(wk,i−1) ≜∇Jk(wk,i−1)−∇Jk(wc,i−1) (30)

We can then write:

∇̂Jk(wk,i−1) = ∇Jk(wc,i−1) + sk,i(wk,i−1) + dk,i−1(wk,i−1) (31)

Here, sk,i(wk,i−1) corresponds to a gradient noise term analogous to the ones we have
encountered in previous non-cooperative, centralized and federated implementations of
stochastic gradient algorithms. The second term dk,i−1(wk,i−1) represents a second deviation
term resulting from lack of consensus across the network. In particular, as long as
wk,i−1 ≈ wc,i−1, we would expect dk,i−1(wk,i−1) to be small. We define the network versions
of these quantities as well:

si(Wi−1) = col {sk,i(wk,i−1)} (32)

di−1(Wi−1) = col {dk,i−1(wk,i−1)} (33)
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Perturbed Transformed Recursions

These definitions allow us to reformulate the recursions (27)–(28) as:

wc,i = wc,i−1−
µ

K

K∑
k=1

∇Jk(wc,i−1)−
µ

K

K∑
k=1

(sk,i(wk,i−1) + dk,i−1(wk,i−1))

= wc,i−1−µ∇J(wc,i−1)−
µ

K

K∑
k=1

(sk,i(wk,i−1) + dk,i−1(wk,i−1)) (34)

VT
2 Wi =Λ2VT

2 Wi−1−µDVT
2 ∇J (1⊗wc,i−1)− µDVT

2 (si(Wi−1) + di−1(Wi−1)) (35)

The first recursion contracts in the mean-square sense for sufficiently small step-sizes since
wc,i−1− µ

K

∑K
k=1∇Jk(wc,i−1) corresponds to a gradient step. The second recursion contracts

since for strongly-connected graphs we have ρ(Λ2) < 1.
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Modeling Conditions

As we have done so far, we assume J(w) to be ν-strongly convex with δ-Lipschitz gradients,
and that the individual objectives have δk-Lipschitz gradients. Furthermore, we impose the
gradient noise condition:

E {sk,i(wk,i−1)|wk,i−1} = 0 (36)

E
{
∥sk,i(wk,i−1)∥2|wk,i−1

}
≤ β2

k∥wo
k −wk,i−1 ∥2 + σ2

k (37)
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Coupled Inequality Recursion
Upon bounding the perturbation terms we find one coupled inequality recursion:[

E∥w̃c,i∥2

E∥VT
2 Wi ∥2

]
≤ Γ

[
E∥w̃c,i−1∥2

E∥VT
2 Wi−1 ∥2

]
+

[
µ2σ2

µ2b

]
(38)

where

λ = 1− 2µν + µ2δ2 (39)

Γ =

[ √
λ+O(µ2) O

( µ
Kν

)
O
(
µ2∥D∥2
1−λ2

)
λ2 +O(µ2)

]
(40)

σ2 =
1

K2

K∑
k=1

(
3β2

k∥wo
k − wo∥2 + σ2

k

)
(41)

b =
4

1− λ2
∥D∥2∥VT∥2

K∑
k=1

∥∇Jk(w
o)∥2 + ∥D∥2∥VT∥2K2σ2 (42)
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Mean-square Behavior

Theorem (Mean-square-behavior of penalty-based decentralized algorithms)

There exists a step-size µ that is small enough, so that:

ρ(Γ) ≤ ∥Γ∥1 = max
{
1− µν +O(µ2), λ2 +O(µ)

}
< 1 (43)

and the decentralized penalty-based algorithm converge in the sense that:[
E∥w̃c,i∥2

E∥VT
2 Wi ∥2

]
≤ O

(
ρ(Γ)i

)
+

 O
(
µσ2

)
+O

(
µ2b

K(1−λ2)

)
O
(

µ2b
1−λ2

)
+O

(
µ3σ2

(1−λ2)2

)  (44)

where

b =
4

1− λ2
∥D∥2∥VT∥2

K∑
k=1

∥∇Jk(w
o)∥2 + ∥D∥2∥VT∥2K2σ2 (45)
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Returning to Individual Errors
The theorem quantifies separately the centroid error along with the deviation of individual
agents from the centroid. We can return to individual errors w̃k,i = wo −wk,i by noting:

1

K

K∑
k=1

E∥w̃k,i∥2 =
1

K

K∑
k=1

E∥wo −wc,i+wc,i−wk,i∥2 ≤ 2E∥w̃c,i∥2 +
2

K

K∑
k=1

E∥wc,i−wk,i∥2

(46)

where the last step follows from Jensen’s inequality. The first term corresponds to the centroid
error, while the last term can be related to E∥VT

2 Wi ∥2 via:

2

K

K∑
k=1

E∥wc,i−wk,i∥2 =
2

K
E∥Wi−1⊗wc,i ∥2 =

2

K
E∥V2VT

2 Wi ∥2
(16)

≤ 2∥V2∥2

K
E∥VT

2 Wi ∥2

Hence:

1

K

K∑
k=1

E∥w̃k,i∥2 ≤ 2E∥w̃c,i∥2 +
2∥V2∥2

K
E∥VT

2 Wi ∥2 (47)
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Visualization of the Limiting Regions
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Discussion

Assuming the step-size is small enough so that terms of order 3 and higher can be disregarded,
we find for the average mean-squared deviation:

lim sup
i→∞

1

K

K∑
k=1

E∥w̃k,i∥2 ≤ O
(
µσ2

)
+O

(
µ2b

K(1− λ2)

)
(48)

Here, µ denotes the step-size of the algorithm and λ2 denotes the second-largest eigenvalue of
the weight matrix A. The remaining constants are:

σ2 =
1

K2

K∑
k=1

(
3β2

k∥wo
k − wo∥2 + σ2

k

)
(49)

b =O

(
∥D∥2

∑K
k=1 ∥∇Jk(w

o)∥2

1− λ2
+ ∥D∥2K2σ2

)
(50)
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Leading-Order Term and Linear Gain

The first term O(µσ2) is proportional to the step-size µ and the aggregate gradient noise σ2.
We encountered this exact term as the steady-state-error expression for stochastic
gradient-descent in earlier lectures. Indeed, after specializing to the homogeneous scenario
where all local gradient noise profiles σ2

k = σ2
1 and minimizers wo

k = wo are the same, we can
recover linear performance gain via:

σ2 =
1

K2

K∑
k=1

(
3β2

k∥wo
k − wo∥2 + σ2

k

)
=

1

K2

K∑
k=1

σ2
k =

σ2
1

K
(51)

and hence:

O(µσ2) = O

(
µσ2

1

K

)
(52)

We conclude that in a homogeneous setting, and for small step-sizes, K agents will perform K
times better than a single agent.
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Higher-Order Term and the Cost of Decentralization

The second term µ2b
K(1−λ2)

is new and a result of our decentralized implementation. It
essentially corresponds to the loss in performance we endure since we are implementing our
decentralized algorithm over a graph and rely on the local diffusion of estimate rather than
central aggregation. For the diffusion algorithm, we have D = Λ2, and hence

µ2b

K(1− λ2)
= O

(
µ2λ2

2

∑K
k=1 ∥∇Jk(w

o)∥2

K(1− λ2)2
+

µ2λ2
2Kσ2

1− λ2

)
(53)

This entire term is multiplied by µ2. Assuming all other constants are fixed and finite, this

means that as µ → 0, the bias term µ2b
K(1−λ2)

will eventually be dominated by the noise term

µσ2. Similarly, if the network is very densely connected, this will imply that λ2 → 0, and again
the bias term will be dominated by the noise term, since both expressions on the right-hand
side of (53) are scaled by λ2

2.
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The Effect of Heterogeneity

There are, however, important settings where the bias is non-trivial.

When the network is very sparsely connected, resulting in λ2 close to one and hence
1− λ2 → 0. The fact that the two terms on the right-hand side of (53) are divided by
(1− λ2)

2 and 1− λ2 respectively has the potential to significantly amplify the bias term
for sparse networks.

When exact gradients are used, or the gradient approximation is of very high quality,

resulting in σ2 → 0. In that case the term
µ2λ2

2

∑K
k=1 ∥∇Jk(w

o)∥2
(1−λ2)2

will dominate all terms

involving the gradient noise variance σ2 and cause a bottleneck.

This insight is consistent with the discussion in Lecture 4, which concluded that the
distributed gradient descent algorithm is unbiased if, and only if, all objectives Jk(w) are
minimized at a common minimizer wo, which implies

∑K
k=1 ∥∇Jk(w

o)∥2 = 0. We will hence
now investigate if bias-corrected algorithms yield improved performance guarantees.
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Unified Formulation
In this section, we describe a unifying and generalized framework that includes all the
decentralized primal-dual and gradient tracking-based methods derived so far as special cases.
Let B ∈ RKM×KM and C ∈ RKM×KM denote two general symmetric matrices that satisfy
the following conditions: 

BW = 0 ⇐⇒ w1 = w2 . . . , wK

C W = 0 ⇐⇒ BW = 0 or C = 0
C is positive semi-definite

(54)

For example, C = L = IKM −A and B = L1/2 is one choice, but many other choices are
possible including beyond what we have encountered so far. We will provide more examples in
the sequel. Let also

Ā = Ā× IM (55)

where Ā is some symmetric doubly-stochastic and positive definite matrix. For example,
Ā = 1

2(IK +A) is one possibility.
Stefan Vlaski and Ali H. Sayed Lecture 5: Performance and Trade-Offs IEEE ICASSP 2024 Short Course 27 / 52



Unified Decentralized Algorithm
Assuming the matrices {Ā,B, C} have been chosen, we can then solve:

W⋆ ≜ argmin
W∈RKM

{
J (W) +

1

2µ
∥W ∥2C

}
, subject to BW = 0 (56)

and introduce the corresponding saddle-point formulation

min
W

max
λ

J (W) +
1

2µ
∥W ∥2C +

1

µ
λTBW (57)

where λ ∈ RKM is a Lagrangian factor and µ > 0. To solve the above problem, we introduce
the following unified decentralized algorithm (UDA), which consists of three successive steps
(primal-descent, dual-ascent, and combination):

Zi = (IKM − C)Wi−1−µ ∇̂ J (Wi−1)− Bλi−1 (58)

λi = λi−1 + B Zi (59)

Wi = ĀZi (60)
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Recovering Decentralized Algorithms as Special Cases of UDA

Table: Obtaining several decentralized methods as special cases of the unified decentralized
algorithm (UDA) described by (58)–(60). We define A = I −L in terms of the Laplacian matrix L.

Algorithm Ā B C
EXTRA IKM L1/2 L = IKM −A
EXACT diffusion A = IKM − L L1/2 0

DIGing IKM L = IKM −A IKM −A2

NEXT A L = IKM −A IKM −A
Aug-DGM A2 L = IKM −A 0
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Network Decomposition for Bias-Corrected Algorithms

The argument essentially mirrors the one one for penalty-based methods. We will again
decompose the network recursion into a recursion for the network centroid, and a second
coupled recursion for the network deviation. The additional technical challenge now will be to
account for the presence and impact of the dual variable λi, which will complicate the
recursions but ultimately be instrumental for bias correction. We can combine (58) and (60)

Wi = Ā(IKM − C)Wi−1−µ Ā∇̂ J (Wi−1)− ĀBλi−1 (61)

Note that for all choices of Ā,B, C in Table 1, we have:(
1T ⊗ IM

)
Ā = 1T ⊗ IM (62)(

1T ⊗ IM

)
B = 0 (63)(

1T ⊗ IM

)
(IKM − C) = 1T ⊗ IM (64)
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Network Centroid for Bias-Corrected Algorithms

We can then conclude:(
1T ⊗ IM

)
Wi

=
(
1T ⊗ IM

)
Ā(IKM − C)Wi−1−µ

(
1T ⊗ IM

)
Ā∇̂ J (Wi−1)−

(
1T ⊗ IM

)
ĀBλi−1

=
(
1T ⊗ IM

)
Wi−1−µ

(
1T ⊗ IM

)
∇̂ J (Wi−1) (65)

Hence:

wc,i ≜
1

K

K∑
k=1

wk,i = wc,i−1−
µ

K

K∑
k=1

∇̂Jk(wk,i−1) (66)

We conclude that the network centroid for all primal-dual and gradient tracking-based
algorithms evolve according to an approximate centralized stochastic gradient recursion,
provided that the matrices Ā,B, C satisfy conditions (62)–(64).
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Deviation from the Centroid
To quantify the deviation from the centroid, note that:

Wi−1⊗wc,i = Wi−
(

1

K
11T ⊗ IM

)
Wi =

(
IKM − 1

K
11T ⊗ IM

)
Wi (67)

Applying this linear transformation to (61):

Wi−1⊗wc,i

(a)
=

(
Ā − 1

K
11T ⊗ IM

)
(IKM − C) (Wi−1−1⊗wc,i−1)

− µ

(
Ā − 1

K
11T ⊗ IM

)
∇̂ J (Wi−1)−

(
Ā − 1

K
11T ⊗ IM

)
Bλi−1

(b)
= D(IKM − C) (Wi−1−1⊗wc,i−1)− µD∇̂ J (Wi−1)−DBλi−1 (68)

where in (a) we again made use of the spectral properties (62)–(64) which imply that(
Ā − 1

K11
T ⊗ IM

)
(IKM − C) (1⊗wc,i−1) = 0, and in (b) we defined:

D = Ā − 1

K
11T ⊗ IM (69)

Stefan Vlaski and Ali H. Sayed Lecture 5: Performance and Trade-Offs IEEE ICASSP 2024 Short Course 32 / 52



Coupled Inequality Recursions
This time, we measure the deviation from the network centroid via:

∆i ≜ E∥Wi−1⊗wc,i ∥2I−C + E∥λ̃i∥2D (70)

Following a similar argument as before, but accounting for the dual variable, we can bound:[
E∥w̃c,i∥2

∆i

]
≤ Γ

[
E∥w̃c,i−1∥2

∆i−1

]
+

[
µ2σ2

µ2b

]
(71)

where

Γ =

[ √
λ+O(µ2) O

( µ
Kν

)
O
(
µ2∥D∥
1−α

)
ᾱ

]
(72)

σ2 =
3

K2

K∑
k=1

β2
k ∥wo

k − wo∥2 + 1

K2

K∑
k=1

σ2
k (73)

b = ∥D∥K2σ2 (74)

Notably,
∑K

k=1 ∥∇Jk(w
o)∥2 = 0 no longer appears in b.
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Convergence of the Universal Decentralized Algorithm

Theorem (Mean-square-behavior of the Universal Decentralized Algorithm)

Suppose all conditions of Theorem 1 hold, and additionally Ā, B, C, D and µ are chosen such
that ρ(Γ) < 1. Then, the iterates generated by the UDA recursions (58)–(60) satisfy:[

E∥w̃c,i∥2

E∥Wi−1⊗wc,i ∥2

]
⪯ O(ρ(Γ)i) +

 O
(
µσ2

)
+O

(
µ2b

K(1−ᾱ)

)
O
(

µ2b
1−ᾱ

)
+O

(
µ3σ2

(1−α)(1−ᾱ)

)  (75)

where ⪯ denotes an elementwise inequality. Assuming µ is small enough so that we can
disregard terms of order 3 or higher, it follows that:

1

K

K∑
k=1

E∥w̃k,i∥2 ≤ O(ρ(Γ)i) +O
(
µσ2

)
+O

(
µ2K∥D∥σ2

1− ᾱ

)
(76)
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Performance Bounds for Specific Decentralized Algorithms

Table: Steady-state performance bounds for decentralized algorithms up to second-order terms in
the step-size µ obtained by specializing Theorem 2.

Algorithm lim supi→∞
1
K

∑K
k=1E∥w̃k,i∥2

DGD O
(
µσ2

)
+O

(
µ2Kσ2

1−λ2(A)

)
+O

(
µ2

∑K
k=1 ∥∇Jk(w

o)∥2
K(1−λ2(A))2

)
Diffusion O

(
µσ2

)
+O

(
µ2Kλ2

2(A)σ2

1−λ2(A)

)
+O

(
µ2λ2

2(A)
∑K

k=1 ∥∇Jk(w
o)∥2

K(1−λ2(A))2

)
EXTRA O

(
µσ2

)
+O

(
µ2Kσ2

1−λ2(A)

)
Exact diffusion O

(
µσ2

)
+O

(
µ2Kλ2(A)σ2

1−λ2(A)

)
DIGing O

(
µσ2

)
+O

(
µ2Kσ2

1−λ2(A)

)
NEXT O

(
µσ2

)
+O

(
µ2Kσ2

1−λ2(A)

)
Aug-DGM O

(
µσ2

)
+O

(
µ2Kλ2

2(A)σ2

1−λ2(A)

)
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Observations and Take-Aways

We now present a number of observations and take-aways that arise from the performance
bounds described in Table 2. Two important facts should be noted: First, the expressions only
represent bounds on the limiting performance of the various decentralized algorithms. Second,
bounds are presented in terms of O(·) expressions, and hence omit the dependence on certain
constants. As such, some care needs to be taken when interpreting these bounds.
Nevertheless, provided the bounds are sufficiently tight, and constants are consistent across
expressions, meaningful interpretations can be inferred from the performance bounds. To
verify this, we complement the discussion in this section by numerical results. Specifically, we
will provide a collection of K agents with data following the linear model:

γk = hT
kw

o
k + vk (77)

with isotropic regressors hk ∼ N (0, σ2
hIM ) ∈ RM and Gaussian noise vk ∼ N (0, σ2

v) ∈ R.
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Controlling Heterogeneity

To control the heterogeneity of the local models wo
k, we sample them from the distribution

N (1, σ2
wIM ) ∈ RM . In this manner, by setting σ2

w = 0, we recover a homogeneous data
setting with wo

k = wo = 1, while σ2
w > 0 results in heterogeneous models with variance defined

by σ2
w. Each local loss is given by:

Jk(w) =
1

2
E∥γk − hT

kw∥2 (78)

It can then be verified that wo
k = argminw Jk(w) and wo = argminw J(w), where

J(w) = 1
K

∑K
k=1 Jk(w). Each agent constructs local gradient approximations:

∇̂Jk(wk,i−1) = −hk,i

(
γk,i − hT

k,iwk,i−1

)
(79)
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Algorithms (1)
We include in simulations three algorithms to represent the three families: the diffusion
algorithm as a penalty-based algorithm, the Exact diffusion algorithm as a primal-dual
algorithm and the Aug-DGM algorithm as an example of a gradient-tracking based algorithm.
The diffusion recursions for the choice (79) amount to:

ψk,i = wk,i−1+hk,i

(
γk,i − hT

k,iwk,i−1

)
(80)

wk,i =
∑
ℓ∈Nk

aℓkψℓ,i (81)

The Exact diffusion recursions amount to:

ψk,i = wk,i−1+hk,i

(
γk,i − hT

k,iwk,i−1

)
(82)

ϕk,i =ψk,i +wk,i−1−ψk,i−1 (83)

wk,i =
∑
ℓ∈Nk

aℓkϕℓ,i (84)
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Algorithms (2)

For the Aug-DGM algorithm we find:

ψk,i = wk,i−1−µgk,i−1 (85)

wk,i =
∑
ℓ∈Nk

aℓkψℓ,i (86)

gk,i =
∑
ℓ∈Nk

aℓk

(
gℓ,i−1 − hk,i

(
γk,i − hT

k,iwk,i

)
+ hk,i−1

(
γk,i−1 − hT

k,i−1wk,i−1

))
(87)

We generate an Erdos-Renyi graph with edge probability 0 < plink < 1, which allows us control
the level of connectivity of the graph. We construct an adjacency matrix using the
Metropolis-Hastings rule (recall Lecture 3). The choice of plink indirectly controls the resulting
mixing rate λ2(A).
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Baseline Simulation
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Figure: Baseline simulation with µ = 0.01, σ2
h = σ2

v = σ2
w = 1, plink = 0.1 and λ2(A) = 0.945.
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Observation #1: First-order expressions match

Our first observation is that the first-order terms in all performance bounds in Table 2
coincide. This indicates that for small step-sizes, as O(µ) terms dominate higher-order terms,
the difference in performance between penalty-based and bias-corrected methods should
decrease. This is one the next slide by reducing the step-size by a factor of 10.

Algorithm lim supi→∞
1
K

∑K
k=1E∥w̃k,i∥2

Diffusion O
(
µσ2

)
+O

(
µ2Kλ2

2(A)σ2

1−λ2(A)

)
+O

(
µ2λ2

2(A)
∑K

k=1 ∥∇Jk(w
o)∥2

K(1−λ2(A))2

)
Exact diffusion O

(
µσ2

)
+O

(
µ2Kλ2(A)σ2

1−λ2(A)

)
Aug-DGM O

(
µσ2

)
+O

(
µ2Kλ2

2(A)σ2

1−λ2(A)

)
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Observation #1: First-order expressions match
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Figure: Reduced step-size with µ = 0.001, σ2
h = σ2

v = σ2
w = 1, plink = 0.1 and λ2(A) = 0.945.
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Observation #2: Difference is amplified for heterogeneous environments

Comparing the bounds for the diffusion, Exact diffusion and Aug-DGM, we note that the
primary difference is in the term containing 1

K

∑K
k=1 ∥∇Jk(w

o)∥2. This indicates that the
difference in performance should vanish for homogeneous objectives, and is verified on the next
slide by setting the variance of local models to zero, i.e., σ2

w = 0.

Algorithm lim supi→∞
1
K

∑K
k=1E∥w̃k,i∥2

Diffusion O
(
µσ2

)
+O

(
µ2Kλ2

2(A)σ2

1−λ2(A)

)
+O

(
µ2λ2

2(A)
∑K

k=1 ∥∇Jk(w
o)∥2

K(1−λ2(A))2

)
Exact diffusion O

(
µσ2

)
+O

(
µ2Kλ2(A)σ2

1−λ2(A)

)
Aug-DGM O

(
µσ2

)
+O

(
µ2Kλ2

2(A)σ2

1−λ2(A)

)
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Observation #2: Difference is amplified for heterogeneous environments
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Figure: A homogeneous setting with µ = 0.01, σ2
h = σ2

v = 1, σ2
w = 0, plink = 0.1 and λ2(A) = 0.945.
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Observation #3: Difference is reduced in densely connected networks

Our third observation is that the term distinguishing the performance of the three algorithms
is multiplied by 1

(1−λ2(A))2
. This indicates that the difference in performance is reduced for

densely connected networks, where λ2(A) → 0. This is verified on the next slide by increasing
the connectivity via plink = 0.5, which results in λ2(A) = 0.725.

Algorithm lim supi→∞
1
K

∑K
k=1E∥w̃k,i∥2

Diffusion O
(
µσ2

)
+O

(
µ2Kλ2

2(A)σ2

1−λ2(A)

)
+O

(
µ2λ2

2(A)
∑K

k=1 ∥∇Jk(w
o)∥2

K(1−λ2(A))2

)
Exact diffusion O

(
µσ2

)
+O

(
µ2Kλ2(A)σ2

1−λ2(A)

)
Aug-DGM O

(
µσ2

)
+O

(
µ2Kλ2

2(A)σ2

1−λ2(A)

)
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Observation #3: Difference is amplified in sparsely connected networks
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Figure: A well-connected graph with σ2
h = σ2

v = σ2
w = 1, plink = 0.5 and λ2(A) = 0.725.
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Observation #4: Incremental variants exhibit additional variance reduction

Our final observation is that second-order terms in the incremental methods, compared to
their non-incremental counterparts, exhibit additional variance reduction by a factor of λ2(A)
or λ2

2(A). We illustrate this on the next slide by comparing the performance of the diffusion
algorithm with that of the DGD algorithm. We observe that the diffusion strategy outperforms
the DGD algorithm by a small margin.

Algorithm lim supi→∞
1
K

∑K
k=1E∥w̃k,i∥2

DGD O
(
µσ2

)
+O

(
µ2Kσ2

1−λ2

)
+O

(
µ2

∑K
k=1 ∥∇Jk(w

o)∥2
K(1−λ2)2

)
Diffusion O

(
µσ2

)
+O

(
µ2Kλ2

2(A)σ2

1−λ2(A)

)
+O

(
µ2λ2

2(A)
∑K

k=1 ∥∇Jk(w
o)∥2

K(1−λ2(A))2

)
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Observation #4: Incremental variants exhibit additional variance reduction
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Figure: Comparison of DGD (non-incremental) and diffusion (incremental) algorithms with
σ2
h = σ2

v = σ2
w = 1, plink = 0.1 and λ2(A) = 0.945.
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Stability of Incremental Variants

A related fact to our previous observation is that incremental variants of decentralized
algorithms tend to have wider stability ranges than their non-incremental counterparts. This is
due to an asymmetry present in non-incremental recursions. We can illustrate this by
comparing the DGD:

wk,i =
∑
ℓ∈Nk

aℓkwℓ,i−1 − µ∇̂Jk(wk,i−1) (88)

and diffusion recursions:

wk,i =
∑
ℓ∈Nk

aℓk

(
wℓ,i−1 − µ∇̂J ℓ(wℓ,i−1)

)
(89)

We verify this by on the next slide by increasing the step-size of until one of the algorithms
becomes unstable.
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Stability of Incremental Variants
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Figure: Comparison of DGD (non-incremental) and diffusion (incremental) algorithms with µ = 0.75,
σ2
h = 1, σ2

v = 0.01,σ2
w = 0, plink = 0.1 and λ2(A) = 0.945.
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Conclusion

We presented performance bounds for penalty-based (DGD and diffusion), primal-dual
(EXTRA and Exact diffusion) and gradient-tracking (DIGing, NEXT, Aug-DGM)
algorithms.

To first order in the step-size, performance bounds are identical amongst all algorithms,
and match those of centralized architectures.

▶ This implies that for homogeneous objectives and small step-sizes, all algorithms exhibit
linear performance gain.

Bias-corrected algorithms outperform penalty-based ones particularly for:
▶ Moderately large step-sizes
▶ Sparse graphs
▶ Heterogeneous objectives
▶ Exact gradients or very low gradient noise

Incremental algorithms exhibit better performance and wider stability ranges than their
non-incremental counterparts.
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