
Multi-Agent Optimization and Learning
Lecture 4: Algorithms for Decentralized Optimization and Learning

Stefan Vlaski† and Ali H. Sayed⋆

†Department of Electrical and Electronic Engineering, Imperial College London, UK
⋆Adaptive Systems Laboratory, École Polytechnique Fédérale de Lausanne, Switzerland

IEEE ICASSP 2024 Short Course

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 1 / 37

Communication Paradigms

Non-cooperative Centralized or parallel Federated Networked or decentralized

In Lecture 2 we studied centralized and federated learning algorithms for multi-agent
systems. These rely on a fusion center.
Decentralized architectures instead rely on peer-to-peer interactions over a graph.

▶ Robustness to node and link failure, communication efficiency and privacy considerations.

We laid the groundwork in Lecture 3 by studying graphs and the fundamental problem of
averaging over graphs. We now expand on these concepts to develop decentralized
optimization algorithms.
Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 2 / 37

Lecture Aims

In this lecture we will systematically develop the most common algorithms for
decentralized optimization and learning, which fall into the following three families:

▶ Penalty-based: Distributed gradient descent [Tsitsiklis, Bertsekas and Athans 1986]

▶ Primal-dual: Augmented Lagrangian [Towfic and Sayed 2015] and EXTRA [Shi, Ling, Wu and Yin 2015]

▶ Gradient-tracking: DIGing [Nedić, Olshevsky and Shi 2017]

We will also see how incremental arguments can be made to develop adapt-then-combine
(ATC) variants of these algorithms with improved stability and performance properties:

▶ Penalty-based: Diffusion [Lopes and Sayed 2008, Chen and Sayed 2012]

▶ Primal-dual: Exact diffusion [Yuan, Ying, Zhao and Sayed 2017]

▶ Gradient-tracking: NEXT [Di Lorenzo and Scutari 2016] and Aug-DGM [Xu, Zhu, Soh and Xie 2015]

We build on optimization techniques from Lectures 1 and 2, and graph properties from
Lecture 3.

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 3 / 37

From Global to Local Optimization Problems

As in previous chapters, we will continue to study aggregate optimization problems of the form:

min
w

K∑
k=1

Jk(w) (1)

Observe that all local cost functions Jk(·) are evaluated at a common w and hence,
problem (1) becomes a global optimization problem. We’d like to remove global variable by
replacement through local variables. To this end, we examine more closely the following
alternative formulation:

min
wk

K∑
k=1

Jk(wk) subject to wk = wℓ ∀ ℓ ∈ Nk. (2)

where Nk denotes the neighborhood of node k. It is evident that (2) is equivalent to (1) as
long as the graph is connected.

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 4 / 37

Penalty-Based Algorithms

The first class of algorithms, which we will refer to as penalty-based algorithms, are derived by
transforming the constraint wk = wℓ ∀ ℓ ∈ Nk into a penalty. To this end, we examine the
alternative problem formulation:

min
wk

K∑
k=1

Jk(wk) +
η

4

K∑
k=1

∑
ℓ∈Nk

cℓk∥wk − wℓ∥2 (3)

where ckℓ = cℓk > 0 denotes the weight used to penalize the squared deviation of wk from wℓ.
We also allow for a common scaling factor η > 0. Comparing (3) to (2), we observe that
disagreement between neighboring agents, i.e. deviations from the constraint set in (3), are
penalized with weight ηcℓk. The aggregate regularizer η

4

∑K
k=1

∑
ℓ∈Nk

cℓk∥wk − wℓ∥2 is a
useful measure of the variability of the weights wk across the graph by means of local
deviations ∥wk − wℓ∥2.

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 5 / 37

Network Quantities

The collection of variables wk for k = 1, . . . ,K describes the state of the network across
agents. We define network quantities:

W ≜ col {w1, w2, . . . , wK} ∈ RMK (4)

Note that W is obtained by stacking wk vertically, resulting in a vector of length MK. We will
also let:

J (W) ≜
K∑
k=1

Jk(wk) (5)

We can then write (3) more compactly as:

min
W

J (W) +
η

4

K∑
k=1

∑
ℓ∈Nk

cℓk∥wk − wℓ∥2 (6)

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 6 / 37

Graph Laplacian
We have seen before that the term η

4

∑K
k=1

∑
ℓ∈Nk

cℓk∥wk − wℓ∥2 consisting of the sum of
pairwise penalties can also be rewritten more compactly in terms of the network quantity W.
Specifically, we have:

η

4

K∑
k=1

∑
ℓ∈Nk

cℓk∥wk − wℓ∥2 =
η

2
WT LW (7)

where L = L⊗ IM and we define the graph Laplacian matrix:

L = diag {C1} − C (8)

Under those definitions we find:

min
W

J (W) +
η

2
WT LW (9)

For brevity, we shall define:

J η(W) ≜ J (W) +
η

2
WT LW (10)

The regularization term η
2 WT LW encourages solutions where individual blocks wk and wℓ are

close in the sense of the squared Euclidean distance.
Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 7 / 37

Numerical Example
Let us consider a graph consisting of three nodes, arranged in an undirected line graph with
symmetric weight matrix:

C =

1 1 0
1 1 1
0 1 1

 ⇐⇒ L=

2 0 0
0 3 0
0 0 2

−

1 1 0
1 1 1
0 1 1

 =

 1 −1 0
−1 2 −1
0 −1 1

 (11)

To simplify calculations, consider scalar weight vectors wk ∈ R and two instances of W:

{w1 = 1;w2 = 2;w3 = 3} =⇒ W =

1
2
3

 or {w′
1 = 2;w′

2 = 1;w′
3 = 3} =⇒ W′ =

2
1
3



Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 8 / 37

Numerical Example

Note that both W and W′ have the same energy, i.e., ∥W ∥2 = ∥W′ ∥2 = 14. Nevertheless, if
we compute the variation measure, we find:

WTLW = 2 and W′TLW′ = 5 (12)

and hence WTLW < W′TLW′. This result quantifies the fact that the weight vectors
{w1 = 1;w2 = 2;w3 = 3} vary more smoothly than {w′

1 = 2;w′
2 = 1;w′

3 = 3} over the line
graph described by the weight matrix C or Laplacian matrix L, where node 2 is central.

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 9 / 37

A Visual Example

To illustrate the graphical variation measure on a larger graph, we place K = 1000 nodes
uniformly at random in a two-dimensional plane, and construct a graph C and Laplacian L
geometrically by connecting nodes whose Euclidean distance is smaller than a threshold. We
then generate W by sampling from a Gaussian Markov random field with distribution

f(W) = (2πη)−M(K−1)/2 (|L|∗)1/2 e−
η
2
WT LW (13)

Here, |L|∗ denotes the pseudo-determinant of L, i.e., the product of its non-zero eigenvalues.
The quantity η represents a temperature parameter and smaller η is more likely to generate
weight vectors wk with large graphical variability, as measured by:

WT LW =
η

2

K∑
k=1

∑
ℓ∈Nk

cℓk∥wk − wℓ∥2 (14)

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 10 / 37

A Visual Example

We show the resulting distributions for varying η. Nodes are represented by dots and their
local wk ∈ R is represented by the color. Edge weights are determined by Euclidean distance.

η = 0.001, large WT LW η = 0.005, medium WT LW η = 1, small WT LW

Figure: Gauss Markov random field samples.

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 11 / 37

The Distributed Gradient Descent (DGD) Algorithm

Applying gradient-descent to (9), we obtain the recursion:

Wi =Wi−1−µ (∇J (Wi−1) + ηLWi−1)

= (I − µηL)Wi−1−µ∇J (Wi−1) (15)

For simplicity, it is common to couple the regularization parameter η to the step-size µ and let
η = µ−1, resulting in:

Wi = AT Wi−1−µ∇J (Wi−1) (16)

where we defined A = A⊗ IM with:
A ≜ I − L (17)

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 12 / 37

Returning to Node-Level Quantities
We’d like to return to node-level quantities. To this end, note first that the gradient of the
aggregate cost J (W), in light of its sum-structure (5), inherits the block-structure of W, and
specifically:

∇WTJ (Wi−1) =


∇wT

1
J1(w1,i−1)

∇wT
2
J2(w2,i−1)

...
∇wT

K
JK(wK,i−1)

 (18)

We can then expand (16):
w1,i

w2,i
...

wK,i

 =AT


w1,i−1

w2,i−1
...

wK,i−1

− µ


∇J1(w1,i−1)
∇J2(w2,i−1)

...
∇JK(wK,i−1)

 =


∑K

ℓ=1 aℓ1wℓ,i−1∑K
ℓ=1 aℓ2wℓ,i−1

...∑K
ℓ=1 aℓKwℓ,i−1

− µ


∇J1(w1,i−1)
∇J2(w2,i−1)

...
∇JK(wK,i−1)


(19)

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 13 / 37

Returning to Node-Level Quantities
Since the recursion has now been fully decoupled into blocks, we can write for the k-th block:

wk,i =

K∑
ℓ=1

aℓkwℓ,i−1 − µ∇Jk(wk,i−1) (20)

To verify that the aggregation step can indeed be performed over a graph, recall that:

cℓk = 0 ∀ ℓ /∈ Nk (21)

By definition, we have that:

A
(17)
= I − L

(8)
= I − (diag {C1} − C) (22)

and hence the combination matrix A inherits the sparsity structure from C. Then:

aℓk = 0 ∀ ℓ /∈ Nk (23)

and (20) is equivalent to:

wk,i =
∑
ℓ∈Nk

aℓkwℓ,i−1 − µ∇Jk(wk,i−1) (24)

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 14 / 37

Diffusion Algorithm
We now develop the adapt-then-combine (ATC) diffusion algorithm, which can be interpreted
as an incremental variant of DGD. Recalling the penalized objective:

min
W

J (W) +
η

2
WT LW (25)

if we take a gradient step first along J (W) and subsequently along η
2 WT LW, we obtain:

ψi = Wi−1−µ∇J (Wi−1) (26)

Wi = (I − µηL)ψi = ATψi (27)

or in node quantities:

ψk,i = wk,i−1 − µ∇Jk(wk,i−1) (28)

wk,i =
∑
ℓ∈Nk

aℓkψℓ,i (29)

This strategy is known as the diffusion strategy. It has an adapt-then-combine (ATC) form,
since the adaptation step (28) and the combination step (29) occur in sequence.

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 15 / 37

Penalty-Based Algorithms for Decentralized Optimization

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 16 / 37

Bias of the DGD Algorithm

Since the DGD algorithm (24) corresponds to a gradient-descent recursion on the penalized
cost (9), we know its limiting point to be:

Wo
η ≜ argmin

W
J (W) +

η

2
WT LW (30)

We contrast this limiting point to the minimizer of the actual aggregate cost:

wo ≜ argmin
w

K∑
k=1

Jk(w) (31)

Since Wo
η is the minimizer of (30), we have by the optimality conditions:

∇J (Wo
η) + ηLWo

η = 0 (32)

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 17 / 37

Bias of the DGD Algorithm

Let us assume that Wo
η = 1⊗ wo. Since L1 = 0, it holds that:

L (1⊗ wo) = 0 (33)

and hence (32) is equivalent to:

∇J (1⊗ wo) = 0 ⇐⇒ ∇Jk(wo) = 0 (34)

However, this would imply that wo is the minimizer for each individual local cost Jk(w). This
does not hold in general, and hence we conclude that the distributed gradient descent
algorithm exhibits a bias whenever the local costs Jk(w) have distinct local minimizers.

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 18 / 37

Bias-Correction For Decentralized Optimization

We have seen how the penalty-method can be used to motivate the DGD and diffusion
strategies for decentralized optimization.

The resulting algorithms are simple and effective, but exhibit a bias unless µ→ 0.

We now proceed to develop two families of algorithms relying on:
▶ Primal-dual techniques
▶ Gradient-tracking techniques

In both cases, this will result in removal of the bias at the expense of some additional
computations and/or communication.

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 19 / 37

Primal-Dual Algorithms

In constructing the penalty-based consensus and diffusion approaches, we introduced the
penalty term 1

2

∑K
k=1

∑
ℓ∈Nk

cℓk∥wk − wℓ∥2 and added it as a penalty to the extended cost
J (W). Instead, we will now leave the same penalty term as a constraint and force it to be
equal to zero, resulting in:

min
wk

K∑
k=1

Jk(wk) subject to
1

4

K∑
k=1

∑
ℓ∈Nk

cℓk∥wk − wℓ∥2 = 0 (35)

It can be readily verified, that problem (37) is equivalent to problem (2), and hence (1), as
long as the graph is connected. Indeed, we have that:

1

4

K∑
k=1

∑
ℓ∈Nk

cℓk∥wk − wℓ∥2 = 0 ⇐⇒ wk = wℓ ∀ ℓ ∈ Nk (36)

which precisely corresponds to the set of constraints in (2).

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 20 / 37

Primal-Dual Algorithms
As before, we can write more compactly:

min
W

J (W) subject to
1

2
WT LW = 0 (37)

Since L = LT is symmetric and positive semi-definite, it admits a square root of the form:

L = BB = BTB (38)

where B = BT. We then have:

0 =
1

2
WT LW =

1

2
WT BTBW =

1

2
∥BW ∥2 ⇐⇒ BW = 0 (39)

We can hence reformulate (37) into the equivalent problem:

min
W

J (W) subject to BW = 0 (40)

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 21 / 37

Primal-Dual Algorithms

The augmented Lagrangian for problem (40) corresponds to:

L(W, λ) = J (W) + ηλTBW +
η

2
∥BW ∥2 = J (W) + ηλTBW +

η

2
WT LW (41)

We can then alternately perform a gradient descent step on the primal variable W along with a
gradient ascent step on the dual variable λ. The resulting algorithm amounts to:

Wi = Wi−1−µ∇J (Wi−1)− µηBTλi−1 − µηLWi−1

= (I − µηL)Wi−1−µ∇J (Wi−1)− µηBTλi−1

= AT Wi−1−µ∇J (Wi−1)− µηBTλi−1 (42)

λi = λi−1 + µηBWi (43)

Comparison with the DGD recursion (16) unveils that the primal update (42) essentially
corresponds to a consensus update with an additional correction term −µBλi−1 that is
governed by the dual recursion (43)

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 22 / 37

EXTRA Algorithm

An evident drawback of the primal-dual augmented Lagrangian algorithm (42)–(43) is the
propagation of dual variables λi. These dual variables not only add complexity to the update
relations at every individual node, but increase the communication requirement of the
algorithm. Thankfully, the dual recursion can be eliminated following a simple observation. For
the iteration from time i− 2 to time i− 1, we have from (42):

Wi−1 = AT Wi−2−µ∇J (Wi−2)− µηBTλi−2 (44)

Subtracting (44) from (42), we find:

Wi−Wi−1 =AT (Wi−1−Wi−2)− µ (∇J (Wi−1)−∇J (Wi−2))− µηBT (λi−1 − λi−2)

(43)
= AT (Wi−1−Wi−2)− µ (∇J (Wi−1)−∇J (Wi−2))− µ2η2BTBWi−1

=AT (Wi−1−Wi−2)− µ (∇J (Wi−1)−∇J (Wi−2))− µ2η2LWi−1 (45)

where the last line follows since B is the symmetric square root of L.

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 23 / 37

EXTRA Algorithm
After setting η = µ−1 and rearranging:

Wi = 2AT Wi−1−AT Wi−2−µ (∇J (Wi−1)−∇J (Wi−2)) (46)

It can be insightful to decompose (46) into two subsequent steps:

ϕi =AT Wi−1−µ∇J (Wi−1) (47)

Wi = ϕi +AT Wi−1−ϕi−1 (48)

Returning to node-level quantities:

ϕk,i =
∑
ℓ∈Nk

aℓkwℓ,i−1 − µ∇Jk(wk,i−1) (49)

wk,i = ϕk,i +
∑
ℓ∈Nk

aℓkwℓ,i−1 − ϕk,i−1 (50)

The first EXTRA step is identical to DGD, but this is followed by a correction step.
Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 24 / 37

Bias of the EXTRA Algorithm

Our motivation for introducing primal-dual arguments in developing a decentralized
optimization algorithm was that penalty-based algorithms exhibit a bias. We will study the
learning dynamics of penalty-based and primal-dual learning algorithms in great detail in the
next lecture and quantify this bias and trade-off precisely. In this section, we simply provide a
high-level justification for why we can expect primal-dual algorithms to exhibit no bias. To this
end, let us assume that the EXTRA recursion (49)–(50) converges to some limiting point W∞,
that we leave unspecified. This fixed-point will satisfy:

W∞ = 2AT W∞−AT W∞−µ (∇J (W∞)−∇J (W∞)) = AT W∞ (51)

After rearranging, it follows from Perron-Frobenius as long as A is primitive that:(
I −AT

)
W∞ = 0 ⇐⇒ AT W∞ = W∞ ⇐⇒ wk,∞ = wℓ,∞ ∀ k, ℓ (52)

We conclude that the limiting point W∞ is consensual.

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 25 / 37

Bias of the EXTRA Algorithm
Let us now argue that indeed wk,∞ = wo, meaning that W∞ = 1⊗ wo is optimal. If we
multiply (42) by 1T ⊗ IM from the left, we have:(

1T ⊗ IM

)
Wi

=
(
1T ⊗ IM

)
AT Wi−1−µ

(
1T ⊗ IM

)
∇J (Wi−1)− µη

(
1T ⊗ IM

)
BTλi−1

(a)
=

(
1T ⊗ IM

)
Wi−1−µ

(
1T ⊗ IM

)
∇J (Wi−1) (53)

where (a) follows since A1 = 1 and L1 = 0 ⇐⇒ B1 = 0. Evaluating at Wi = Wi−1 = W∞:(
1T ⊗ IM

)
∇J (W∞) =

K∑
k=1

∇Jk(wk,∞) = 0 (54)

But we saw in (52) that W∞ is consensual, and hence wk,∞ = w∞ for all k and:

K∑
k=1

∇Jk(w∞) = 0 ⇐⇒ w∞ = wo ⇐⇒ W∞ = 1⊗ wo (55)

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 26 / 37

Exact Diffusion Algorithm
We can deviate from the derivation of the EXTRA algorithm using incremental updates
analogous to the diffusion algorithm. We begin with (41), repeated here for reference:

L(W, λ) = J (W) + ηλTBW +
η

2
WT LW (56)

Instead of performing straight gradient-descent ascent, which yields EXTRA, we descend
incrementally, first along J (W) and subsequently along the remaining terms. This yields:

ψi = Wi−1−µ∇J (Wi−1) (57)

Wi = ψi − µηLψi − µηBTλi−1 (58)

λi = λi−1 + µηBWi (59)

With the choice η = µ−1 and AT = I − µηL = I − L, we have:

ψi = Wi−1−µ∇J (Wi−1) (60)

Wi =ATψi − BTλi−1 (61)

λi = λi−1 + BWi (62)

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 27 / 37

Exact Diffusion Algorithm
We can write this compactly as:

Wi =AT (Wi−1−µ∇J (Wi−1))− BTλi−1 (63)

λi = λi−1 + BWi (64)

We now follow a similar argument to EXTRA to eliminate the dual variable. The primal
update at time i− 1 is evaluated to:

Wi−1 =AT (Wi−2−µ∇J (Wi−2))− BTλi−2 (65)

Subtracting:

Wi−Wi−1 =AT (Wi−1−Wi−2−µ∇J (Wi−1) + µ∇J (Wi−2))− BT (λi−1 − λi−2)

=AT (Wi−1−Wi−2−µ∇J (Wi−1) + µ∇J (Wi−2))− BTBWi−1

=AT (Wi−1−Wi−2−µ∇J (Wi−1) + µ∇J (Wi−2))− LWi−1 (66)

After rearranging:

Wi =AT (2Wi−1−Wi−2−µ∇J (Wi−1) + µ∇J (Wi−2)) (67)

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 28 / 37

Exact Diffusion Algorithm

We can formulate this relation in multiple steps as:

ψi = Wi−1−µ∇J (Wi−1) (68)

ϕi = ψi + Wi−1−ψi−1 (69)

Wi =ATϕi (70)

which is the Exact diffusion algorithm in network form. In terms of local quantities:

ψk,i = wk,i−1 − µ∇Jk(wk,i−1) (71)

ϕk,i = ψk,i + wk,i−1 − ψk,i−1 (72)

wk,i =
∑
ℓ∈Nk

aℓkϕℓ,i (73)

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 29 / 37

Gradient-Tracking Based Algorithms
An alternative approach to compensating for the bias introduced by penalty-based algorithms
is by means of a technique known as gradient-tracking, based on the dynamic consensus
algorithm we introduced in Lecture 4. Recall that the distributed gradient descent
algorithm (20) takes the form:

wk,i =
∑
ℓ∈Nk

aℓkwℓ,i−1 − µ∇Jk(wk,i−1) (74)

The mixing term on the right-hand side encourages consensus, while descent along the
negative direction of the gradient ∇Jk(wk,i−1) encourages optimality. Of course descent in
this case only occurs along the local objective of agent k. If we had access to global
information (say in the form of a fusion center), we would prefer to implement the recursion:

wk,i =
∑
ℓ∈Nk

aℓkwℓ,i−1 −
µ

K

K∑
ℓ=1

∇Jℓ(wℓ,i−1) (75)

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 30 / 37

DIGing Algorithm

The quantity 1
K

∑
k=1∇Jℓ(wℓ,i−1) is in the form of an average of the local signals

∇Jℓ(wℓ,i−1). We can hence leverage the dynamic consensus technique to compute the average
in a decentralized manner:

wk,i =
∑
ℓ∈Nk

aℓkwℓ,i−1 − µgk,i−1 (76)

gk,i =
∑
ℓ∈Nk

aℓkgℓ,i−1 +∇Jk(wk,i)−∇Jk(wk,i−1) (77)

This version of gradient-tracking is known as DIGing. Gradient-tracking algorithms are also
bias-free.

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 31 / 37

NEXT and Aug-DGM
We can mirror the argument leading to the diffusion algorithm in the gradient-tracking
framework of DIGing, and develop the NEXT algorithm:

ψk,i = wk,i−1 − µgk,i−1 (78)

wk,i =
∑
ℓ∈Nk

aℓkψℓ,i (79)

gk,i =
∑
ℓ∈Nk

aℓkgℓ,i−1 +∇Jk(wk,i)−∇Jk(wk,i−1) (80)

If additionally, we compute the gradient tracking term incrementally, we find Aug-DGM:

ψk,i = wk,i−1 − µgk,i−1 (81)

wk,i =
∑
ℓ∈Nk

aℓkψℓ,i (82)

gk,i =
∑
ℓ∈Nk

aℓk (gℓ,i−1 +∇J ℓ(wℓ,i)−∇J ℓ(wℓ,i−1)) (83)

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 32 / 37

Computational and Communication Complexity

Particularly when implementing decentralized algorithms on edge devices, it is important to
consider implications on computational and communciation complexity.

Penalty-based algorithms (DGD and diffusion) are the simplest and require one gradient
computation and one exchange of parameters per iteration.

Primal-dual algorithms (EXTRA and Exact diffusion) require some additional
computation to perform the correction step, but still require only one gradient
computation and one exchange of model parameters per iteration.

Gradient-tracking algorithms additionally require the propagation of the tracking variable
gk,i. This requires storage of the gradient computed at the previous time instance, as well
as the exchange of the tracking variable in addition to model parameters at every
iteration. This approximately doubles the communication cost relative to penalty-based
and primal-dual algorithms. The recursions of DIGing and NEXT allow parameters and
tracking variables to be exchanged in the same time slot, while Aug-DGM requires
sequential communication of parameters and tracking variables.

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 33 / 37

Conclusion and Outlook

We developed a number of decentralized optimization algorithms falling into the three
broad families:

▶ Penalty-based: Distributed gradient descent (DGD)
▶ Primal-dual: Augmented Lagrangian and EXTRA
▶ Gradient-tracking: DIGing

We also saw how incremental arguments can be made to develop adapt-then-combine
(ATC) variants of these algorithms with improved stability and performance properties:

▶ Penalty-based: Diffusion
▶ Primal-dual: Exact diffusion
▶ Gradient-tracking: NEXT and Aug-DGM

Penalty-based methods exhibit a bias, while the other two families correct the bias using
primal-dual or gradient-tracking techniques.

In the next lecture, we examine in detail the performance of all of these algorithms.

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 34 / 37

References and Further Reading

General references and surveys:
▶ A. H. Sayed, Inference and Learning from Data, Cambridge University Press, 2022.
▶ A. H. Sayed, “Adaptation, learning, and optimization over networks,” Foundations and

Trends in Machine Learning, vol. 7, no. 4-5, pp. 311–801, July 2014.
▶ A. H. Sayed, “Adaptive Networks,” in Proceedings of the IEEE, vol. 102, no. 4, pp.

460-497, 2014.
▶ S. Vlaski, S. Kar, A. H. Sayed and J. M. F. Moura, “Networked Signal and Information

Processing: Learning by multiagent systems,” in IEEE Signal Processing Magazine, vol. 40,
no. 5, pp. 92-105, July 2023,

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 35 / 37

References and Further Reading

Specific algorithms:
▶ J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous deterministic and

stochastic gradient optimization algorithms,” IEEE Trans. Automatic Control, vol. 31, no. 9,
pp. 803–812, 1986.

▶ C. G. Lopes and A. H. Sayed, “Diffusion Least-Mean Squares Over Adaptive Networks:
Formulation and Performance Analysis,” in IEEE Trans. Signal Processing, vol. 56, no. 7,
pp. 3122-3136, July 2008.

▶ J. Chen and A. H. Sayed, “Diffusion Adaptation Strategies for Distributed Optimization and
Learning Over Networks,” in IEEE Trans. Signal Processing, vol. 60, no. 8, pp. 4289-4305,
Aug. 2012.

▶ W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: An exact first-order algorithm for
decentralized consensus optimization,” SIAM Journal on Optimization, vol. 25, no. 2, pp.
944–966, 2015.

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 36 / 37

References and Further Reading

Specific algorithms (continued):
▶ Z. J. Towfic and A. H. Sayed, “Stability and performance limits of adaptive primal-dual

networks,” IEEE Trans. Signal Processing, vol. 63, no. 11, pp. 2888–2903, 2015.
▶ J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Augmented distributed gradient methods for

multi-agent optimization under uncoordinated constant stepsizes,” in Proc. IEEE CDC,
2015, pp. 2055–2060.

▶ P. Di Lorenzo and G. Scutari, “NEXT: In-network nonconvex optimization,” IEEE Trans.
Signal and Information Processing over Networks, vol. 2, no. 2, pp. 120–136, 2016.

▶ K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact diffusion strategy for optimization by
networked agents,” in Proc. 25th Eur. Signal Process. Conf., 2017.

▶ A. Nedić, A. Olshevsky, and W. Shi, “Achieving geometric convergence for distributed
optimization over time-varying graphs,” SIAM Journal on Optimization, vol. 27, no. 4, pp.
2597–2633, 2017.

Stefan Vlaski and Ali H. Sayed Lecture 4: Algorithms IEEE ICASSP 2024 Short Course 37 / 37

