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Objective of this lecture

In Lecture 2 we presented a number of fusion-center based algorithms for multi-agent
learning optimization and learning.

We also developed performance bounds, and investigated the dependence of these bounds
on different factors including:

▶ The quality of local gradient approximations.
▶ The level of heterogeneity in the system.
▶ Other algorithm parameters such as participation rate and number of local updates.

For the remainder of the course, we will develop fully decentralized architectures, where
interactions occur over a graph.

In this lecture, we will introduce graphs and their properties, and illustrate some key
dynamics in a simplified setting, namely the problem of computing averages over a graph.

In the next lecture, we will generalize to optimization and learning over graphs.
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Graphs

An directed, unweighted graph G = (N , E) consists of a pair of sets N and E , where N
denotes a set of vertices or nodes, and E denotes a set of directed edges linking pairs of vertices
in N . Each edge in E is represented as a pair (i.e., a 2-tuple) of vertices in N . In principle,
the elements of N can be arbitrary objects. For simplicity, it is generally sufficient number the
vertices in N beginning at one through |N | and represent the elements through their
respective index. In most lectures, vertices will be “agents”, or “learners”, terms which we use
interchangeably in our presentation. We generally denote the number of agents |N | by K.
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Example

We consider a collection of 4 nodes, numbered 1 through 4. The nodes are collected in the set:

N = {1, 2, 3, 4} (1)

We construct a sample graph using the following set of edges:

E = {(1, 1), (1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3), (2, 4), (4, 2)} (2)

The resulting graph G ≜ (N , E) is displayed below.

Figure: A simple graph consisting of four vertices.
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Adjacency Matrix

Instead of describing a graph via its set of nodes N and vertices E , we can equivalently
describe it through its adjacency matrix C ∈ {0, 1}K×K . Here, the element cℓk = [C]ℓ,k is set
to one when there is an edge from node ℓ to node k, and to zero otherwise. Formally:

cℓk = 1 ⇐⇒ (ℓ, k) ∈ E (3)

cℓk = 0 ⇐⇒ (ℓ, k) /∈ E (4)

In this manner, we can find for the graph from the earlier example:

C =


1 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

 (5)
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Weighted Adjacency Matrix

In many situations, it will be useful to associate a weight with edges in a graph to quantify the
strength of the link between a pair of nodes ℓ and k. We can readily capture these weights by
allowing cℓk to take non-negative real values, resulting in an adjacency matrix C ∈ RK×K . We
allow only non-zero weights to be associated with an edge to avoid degenerate situations
where nodes are connected by an edge, but the associated weight is zero. In this manner, it
follows from cℓk > 0 that there is an edge from agent ℓ to agent k, while cℓk = 0 implies that
there is no edge from ℓ to k.

C =


1 2 0 0
0.5 0 4 2
0 2 0 1
0 0.2 1 0

 (6)
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Neighborhoods

For a node k, we define the in-neighborhood as the set of nodes N in
k , for which an edge from ℓ

to k exists. Formally:

N in
k = {ℓ : (ℓ, k) ∈ E} = {ℓ : cℓk > 0} (7)

Alternatively, we can define the out-neighborhood N out
k as the set of nodes, for which an edge

to ℓ from k exists:

N out
k = {ℓ : (k, ℓ) ∈ E} = {ℓ : ckℓ > 0} (8)

For graphs where an edge cℓk describes the influence of agent ℓ on agent k, we can interpret
N in

k as the set of agents that k is influenced by, while N out
k denotes the set of nodes that are

influenced by k.
An edge that connects an agent to itself is called a self-loop. This means that an agent k can
be contained in its own neighborhood, provided that it has a self-loop.
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Undirected Graphs

We say that a graph is undirected, if the presence of an edge from agent k agent to ℓ, implies
that there is an edge from agent ℓ to agent k. In other words:

k ∈ N in
ℓ ⇐⇒ ℓ ∈ N in

k (9)

It can be readily verified that this is equivalent to requiring the in-neighborhoods and
out-neighborhoods of each node k to coincide:

N in
k = N out

k ≜ Nk (10)

This means that for undirected graphs, there is no need to distinguish between its in-degrees
and out-degrees, and we can just refer to the neighborhood Nk.
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Symmetric Graphs

We say that a graph is symmetric, if the weights linking pairs of agents are symmetric, i.e.,
when the adjacency matrix is symmetric.

C = CT (11)
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Adjacency Matrix

Figure: An undirected graph with the neighborhood Nk of node highlighted. On the right, we see the
corresponding adjacency matrix.
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Strongly-Connected Graphs

We say that a graph is strongly-connected if:

It is connected.

There exists at least one self-loop, i.e., ckk > 0 for at least one k.

Strong-connectivity of a graph implies that its adjacency matrix is primitive, which means that
there exists some finite integer no > 0 such that all entries of Cno are strictly positive:

[Cno ]ℓ,k > 0, uniformly for all (ℓ, k) (12)
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Perron-Frobenius Theorem

One important consequence of the primitiveness of C is that a famous result in matrix theory,
known as the Perron-Frobenius theorem, characterizes the eigen-structure of C. In particular,
it will hold that:

(a) The matrix C has a single leading eigenvalue λ1 ∈ R, which is positive and real.

(b) The magnitudes of all other (potentially complex) eigenvalues of C are strictly less than
λ1, so that ρ(A) = λ1.

(c) The leading eigenvalue λ1 has algebraic multiplicity one, which implies that there is a
single eigenvector p associated with λ1. Furthermore, p can be normalized so that all of
its entries are strictly positive and add up to one, i.e.,

Cp = λ1p, 1Tp = 1, pk > 0, k = 1, 2, . . . ,K (13)

We refer to p as the Perron vector of C.
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Jordan Decomposition of Primitive Matrices
Owing to the multiplicity of the leading eigenvalue, the Jordan decomposition C = VϵJV

−1
ϵ

has a very particular structure:

Vϵ =
[
p VR

]
, J =

[
λ1 0
0 Jϵ

]
, V −1

ϵ =

[
qT

V T
L

]
(14)

where Jϵ is a block Jordan matrix with the eigenvalues λ2(C) through λK(C) on the diagonal
and ϵ on the first lower sub-diagonal. In particular, ρ (Jϵ) < λ1. One consequence of this
decomposition is that:

ρ
(
A− pqT

)
< λ1 (15)

and

lim
i→∞

Ci

λi
1

= pqT (16)
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Graph Laplacian
An alternative description of a graph is sometimes given through its graph Laplacian:

L ≜ diag {C1} − C (17)

When C is symmetric, several useful facts about a graph can be extracted from its Laplacian.
Let θ1 ≥ θ2 ≥ . . . ≥ θK denote the ordered eigenvalues of L. Then:

(a) L is symmetric nonnegative-definite so that θk ≥ 0, for k = 1, 2, . . . ,K.

(b) The entries on each row of L add up to zero so that L1 = 0. This means that 1 is a
right eigenvector of L corresponding to the eigenvalue at zero.

(c) The smallest eigenvalue is always zero, i.e., θK = 0. The second smallest eigenvalue,
θK−1, is called the algebraic connectivity of the graph.

(d) The number of times that zero is an eigenvalue of L (i.e., its multiplicity) is equal to the
number of connected subgraphs.

(e) The algebraic connectivity of a connected graph is nonzero, i.e., θK−1 ̸= 0. In other
words, a graph is connected if, and only if, its algebraic connectivity is nonzero.
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Example
If we consider again the graph from our earlier example, we find:

L = diag {C1} − C

= diag



1 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0



1
1
1
1


−


1 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0



= diag



2
3
2
2


−


1 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0



=


2 0 0 0
0 3 0 0
0 0 2 0
0 0 0 2

−


1 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

 =


1 −1 0 0
−1 3 −1 −1
0 −1 2 −1
0 −1 −1 2

 (18)
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Interpretation as a Differential Operator

The Laplacian carries a useful interpretation because it allows us to compute efficiently the
variation of a signal over a graph. Specifically, for a symmetric C = CT and a signal x ∈ RK ,
it holds that:

1

2

K∑
k=1

K∑
ℓ=1

cℓk∥xk − xℓ∥2 = xTLx (19)
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Combination/Weight Matrices

Adjacency matrices will appear frequently in future lectures as a means for describing
weighting assigned by agents to information received from their neighbors. In this context, we
will impose additional conditions on the entries of the adjacency matrix, and we will refer to
matrices satisfying these conditions as combination matrices or weight matrices. Combination
weights {aℓk} will be nonnegative scalars that satisfy the following condition for each agent
k = 1, 2, . . . ,K:

aℓk ≥ 0,

K∑
ℓ=1

aℓk = 1, and aℓk = 0 if, and only if, ℓ /∈ Nk (20)

Condition (20) implies that the combination matrix A = [aℓk] is left-stochastic, which means
that:

1TA = 1T ⇐⇒ AT1 = 1, (left-stochastic) (21)

Stefan Vlaski and Ali H. Sayed Lecture 3: Graphs IEEE ICASSP 2024 Short Course 17 / 53



Spectral Properties of Combination Matrices
Since the spectral radius of a matrix is bounded by any of its norms, it follows that:

ρ(A) ≤ ∥A∥1 = 1 (22)

From (21) we observe that A has an eigenvalue at one and hence ρ(A) = 1. We also
recognize that A is an adjacency matrix. Hence, if the underlying graph is strongly-connected,
it follows that A is primitive, and we can conclude from Perron-Frobenius, that the eigenvalue
at one has multiplicity one with corresponding Perron vector p:

Ap = p (23)

If A is additionally symmetric, it follows that:

AT1 = 1, A = AT, (doubly-stochastic) (24)

where 1 denotes the vector with all entries equal to one. We say that A is doubly-stochastic
since the entries on each of its rows and on each of its columns add up to one It is useful to
note that when A is doubly-stochastic, its Perron vector p defined in (22) is given by

p =
1

K
1 (25)
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Constructing Combination Matrices

We will frequently be provided with an C, whose entries are positive but do not necessarily
add up to one, and seek to transform it into a valid left- or doubly-stochastic combination
matrix A. There are some popular constructions, which we list here. These constructions start
with an undirected, unweighted graph with associated adjacency matrix C and Laplacian L.
We also denote the degrees of the various agents by nk and refer to the maximum degree
across the graph by nmax.
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Constructing Combination Matrices

Averaging rule (left-stochastic):

aℓk =

{
1/nk, if k ̸= ℓ are neighbors or k = ℓ

0, otherwise
(26)

Laplacian rule (doubly-stochastic):

A = IK − β L, β > 0 (27)

Metropolis rule (doubly-stochastic):

aℓk =


1/max{nk, nℓ}, if k ̸= ℓ are neighbors

1−
∑

ℓ∈Nk\{k}

aℓk, when k = ℓ

0, otherwise

(28)
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Averaging over Graphs

We consider a collection N of K agents, indexed by k, where each agent is assigned some
vector-valued quantity gk ∈ RM as its “signal”. The agents are arranged in a connected graph
G = (N , E). Our objective is to, in a decentralized manner, compute:

{g1, . . . , gK} =⇒ g ≜
K∑
k=1

pkgk (29)

Here, {pk}Kk=1 denote scalar convex combination weights, such that
∑K

k=1 pk = 1. It is
most common to let pk = 1

K , though we allow for arbitrary convex weights for generality.

If the collection of signals {gk}Kk=1 are jointly available at some central location, and in
the absence of computational constraints, implementing (29) is straightforward by simply
averaging the available realizations.
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Recap and Outlook

We have introduced various concepts relating to graphs, as well as their properties.

One key theme was that properties of the graph in many cases imply spectral properties
on the adjacency or Laplacian matrix.

▶ Hence, we can study graphs through linear algebra.

We will now see how we can apply these concepts by performing a simple task over
networks, namely computing averages.
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Averaging over Graphs

We consider a collection N of K agents, indexed by k, where each agent is assigned some
vector-valued quantity gk ∈ RM as its “signal”. The agents are arranged in a connected graph
G = (N , E). The objective of a consensus algorithm is to, in a decentralized manner, compute:

{g1, . . . , gK} =⇒ g ≜
K∑
k=1

pkgk (30)

Here, {pk}Kk=1 denote scalar convex combination weights, such that
∑K

k=1 pk = 1. It is most
common to let pk = 1

K , though we allow for arbitrary convex weights for generality.
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The Average Consensus Algorithm
We claim that we can pursue the average value g =

∑K
k=1 pkgk by initializing wk,0 = gk and

then iterating:

wk,i =
∑
ℓ∈Nk

aℓkwℓ,i−1 (31)

where the weights aℓk are elements of a left-stochastic combination matrix A ∈ RK×K with:

aℓk

{
> 0, if ℓ ∈ Nk,

= 0, otherwise.
and

K∑
ℓ=1

aℓk = 1 (32)

As long as A is primitive, it then follows from the Perron-Frobenius Theorem, that:

Ap = p, AT1 = 1, lim
i→∞

Ai = p1T (33)

where p denotes the Perron eigenvector of A. Assume for now that the Perron entries pk
coincide with the desired averaging weights (more on design later).
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Network Quantities
Whenever studying the evolution of a collection of quantities over a network, it will be useful
to introduce “network quantities” that summarize the state of the network in a compact form.
We collect:

Wi ≜


w1,i

w2,i
...

wK,i

 (34)

and define

A ≜ A⊗ IM (35)

We can then write the consensus averaging recursion compactly as:

Wi = AT Wi−1 (36)
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Limiting Dynamics

Iterating the network recursion:

lim
i→∞

Wi = lim
i→∞

(
AT

)i
W0 =

(
lim
i→∞

(
AT

)i
⊗ IM

)
W0 (37)

But we know from Perron-Frobenius that:

lim
i→∞

Ai = p1T =⇒ lim
i→∞

(
AT

)i
= 1pT (38)

and hence:

lim
i→∞

Wi =
(
1pT ⊗ IM

)
W0 =

pT ⊗ IM
...

pT ⊗ IM


 g1

...
gK

 =


∑K

k=1 pkgk
...∑K

k=1 pkgk

 (39)

We conclude that limi→∞wk,i = g for all k.
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Convergence of the consensus averaging algorithm

Linear convergence of the consensus averaging algorithm

Each agent wk,i following the consensus protocol (31) converges linearly to the weighted mean

g ≜
∑K

k=1 pkgk:

K∑
k=1

∥g − wk,i∥2 ≤
∥∥∥p1T −A

∥∥∥2i × K∑
k=1

∥g − wk,0∥2, (40)

where the rate of convergence is dictated by
∥∥p1T −A

∥∥, and we are free to choose the norm.
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Sketch of Proof: Step 1 – Centroid is Stationary
Let us first examine the evolution of the weighted mean of iterates across the network
wi =

∑K
k=1 pkwk,i. We have:

wi =

K∑
k=1

pkwk,i =
(
pT ⊗ IM

)
Wi =

(
pT ⊗ IM

)
AT Wi−1 =

(
(Ap)T ⊗ IM

)
Wi−1

=
(
pT ⊗ IM

)
Wi−1

=

K∑
k=1

pkwk,i−1

= wi−1 (41)

We observe that, as a consequence of the fact that p is an eigenvector for the combination
matrix A, the weighted mean wi is constant over time. We can conclude by iterating that:

wi = wi−1 = . . . = w0=

K∑
k=1

pkgk (42)
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Sketch of Proof: Step 2 – Deviations around the Centroid Contract
It follows that the weighted mean, which we also refer to as a centroid, is fixed, while the local
iterates wk,i are scattered around it. We can then use the centroid as a reference point, and
study to evolution of the network around it. Subtracting the consensus recursion from the
augmented mean 1K ⊗ wi, we find:

1K ⊗ wi − Wi = 1K ⊗ wi −AT Wi−1

= 1K ⊗ wi−1 −AT Wi−1

= 1K ⊗
((

pT ⊗ IM

)
Wi−1

)
−AT Wi−1

=
(
1pT ⊗ IM

)
Wi−1−AT Wi−1

=
(
1pT ⊗ IM −AT

)
Wi−1

=
(
1pT ⊗ IM −AT

)
(Wi−1−1⊗ wi−1) (43)

The result follows after taking norms and and applying the sub-multiplicative property of
norms.
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Centralities and Mixing Rate

For a graph G with combination matrix A, we refer to the elements of the Perron eigenvector:

Ap = p (44)

as the agent centrality, and the quantity:

λ2 ≜
∥∥∥A− p1T

∥∥∥ (45)

as the mixing rate. Note that for a symmetric combination matrix A = AT, by choosing ∥ · ∥
to be the spectral norm, it follows that p = 1

K1 and:∥∥∥∥A− 1

K
11T

∥∥∥∥ = max {|λ2(A)|, |λK(A)|} (46)
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Designing Perron Vectors and Mixing Rates

We consider an undirected graph with k ∈ Nℓ ⇔ ℓ ∈ Nk. Then, the following choice of
combination weights aℓk yields any desired Perron vector p = Ap:

aℓk =


0, if ℓ /∈ Nk,

pℓ, if ℓ ∈ Nk\ℓ,
1−

∑
m∈Nk\ℓ amk, when ℓ = k.

(47)

Combination matrices can also be designed to optimize ρ
(
A− 1

K11
T
)

[Boyd, Diaconis, and Xiao 2004].
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Dynamic Consensus

We consider now a collection of K vector-valued and potentially random and time-varying
signals gk,i ∈ RM , and wish to efficiently compute the average:

gi ≜
K∑
k=1

pkgk,i (48)

where {pk}Kk=1 denote scalar convex combination weights, such that
∑K

k=1 pk = 1.
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Dynamic Consensus
To this end, it will be useful to formulate an optimization problem:

Gi = argmin
W

K∑
k=1

pk∥wk −gk,i∥2, subject to wk = wℓ ∀ k, ℓ. (49)

To verify that (49) indeed defines the weighted average gi, we note that under the constraint
wk = wℓ ∀ k, ℓ, (49) is equivalent to:

gi = argmin
w

K∑
k=1

pk∥w − gk,i∥2 (50)

By differentiating, we find:

K∑
k=1

pk(w−gk,i) = 0 ⇐⇒ w =
K∑
k=1

pkgk,i (51)
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Dynamic Consensus

We will now examine algorithms for dynamic consensus by reformulating (49) in a manner
which makes it more amenable to decentralized computations. To this end, we note that, as
long as the graph G is connected, the constraint wk = wℓ ∀ k, ℓ can be simplified to the
equivalent constraint wk = wℓ ∀ ℓ ∈ Nk, where Nk denotes the neighborhood of node k.
This is because for any connected graph, there exists a sequence of edges leading from any
node k, to an arbitrary node ℓ, yielding a string of equality constraints leading from node k all
the way to node ℓ. It then follows that (49) is equivalent to:

Gi = argmin
W

K∑
k=1

pk∥wk − gk,i∥2, subject to wk = wℓ ∀ ℓ ∈ Nk. (52)
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Dynamic Consensus

Furthermore, we can write equivalently:

Gi = argmin
W

K∑
k=1

pk∥wk −wk,i∥2, subject to

K∑
k=1

K∑
ℓ=1

cℓk∥wk −wℓ ∥2 = 0. (53)

where cℓk = ckℓ are symmetric, non-negative weights with:

cℓk =

{
> 0 if ℓ ∈ Nk,

= 0 otherwise.
(54)

To verify that (52) and (53) are equivalent, we observe that:

K∑
k=1

K∑
ℓ=1

cℓk∥wk −wℓ ∥2 = 0 ⇐⇒ ∥wk −wℓ ∥2 = 0 ∀ℓ ∈ Nk ⇐⇒ wk = wℓ, ∀ℓ ∈ Nk. (55)
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Penalty-Based Dynamic Consensus

Rather than solve (53) with the exact constraint
∑K

k=1

∑K
ℓ=1 cℓk∥wk −wℓ ∥2 = 0, we penalize

deviation from the constraint as in:

Gη
i = argmin

W

K∑
k=1

pk∥wk − gk,i∥2 +
η

4

K∑
ℓ=1

cℓk∥wk −wℓ ∥2 (56)

where η > 0 denotes a new penalty parameter. It is important to note that, while (49)
through (53) were equivalent reformulations of the consensus problem, relation (56) is only an
approximation for finite η. Letting η → ∞ ensures

∑K
ℓ=1 cℓk∥wk −wℓ ∥2 = 0, and hence

exact consensus.
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Penalty-Based Dynamic Consensus

In the sequel, we will quantify this difference, and present an algorithm for pursuing Gη
i . To

this end, it will be useful to write the penalized cost (56) in terms of network level quantities.
We introduce:

P =


p1 0 · · · 0
0 p2 · · · 0

0
...

. . . 0
0 0 · · · pK

 = diag{p} (57)

P = P ⊗ IM (58)

Then:

K∑
k=1

pk∥wk − gk,i∥2 = ∥W −Gi∥2P (59)
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Penalty-Based Dynamic Consensus

For the second term in (56), we can verify, that:

η

2

K∑
k=1

∑
ℓ∈Nk

cℓk∥wk −wℓ ∥2 = ηWT LW (60)

where L = L⊗ IM and we defined:

L = diag {C1} − C (61)

Hence, problem (56) is equivalent to:

Gη
i = argmin

W

1

2
∥W −Gi∥2P +

η

2
WT LW (62)
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Penalty-Based Dynamic Consensus

Note that this objective function is time-varying. Nevertheless, we can pursue its minimizing
argument via (online) gradient-descent, pre-conditioned by the positive-definite matrix P−1:

Wi = Wi−1−µP−1 (P (Wi−1−Gi) + µηLWi−1)

= Wi−1−µ (Wi−1−Gi)− µηP−1LWi−1

=
(
(1− µ)I − µηP−1L

)
Wi−1+µGi

=
(
I − µηP−1L

)
Wi−1+µ (Gi − Wi−1)

(63)

We set µ = η−1 and define:

AT ≜ I − P−1L (64)
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Penalty-Based Dynamic Consensus

We can then equivalently write:

Wi = AT Wi−1+µ (Gi − Wi−1) (65)

It is instructive to examine the spectral structure of AT defined as in (64). Since L1 = 0, we
have:

AT1 =
(
I − µηP−1L

)
1 = 1− µηP−1L1 = 1 (66)

Ap =
(
I − µηLP−1

)
p = p− µηLP−1p = p− µηL1 = p (67)

We conclude that 1 and p are left and right eigenvectors corresponding to an eigenvalue at
one respectively. Returning to node level quantities, we arrive at:

wk,i =
∑
ℓ∈Nk

aℓk wℓ,i−1+µ
(
gk,i −wk,i−1

)
(68)
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Bias of Penalty-Based Algorithms

The dynamic consensus algorithm we derived relies on a penalty-reformulation of the
networked averaging problem, which is merely an approximation unless η → ∞ which implies
µ → 0. We can verify that even when applying this algorithm to a constant set of signal, this
will result in a bias compared to the classical consensus averaging algorithm. Thus, consider
the case when gk,i ≜ gk is deterministic and constant. We then have:

Wi =
(
AT − µI

)
Wi−1+µG (69)

Iterating we find:

Wi =
(
AT − µI

)i
W0+µ

 i−1∑
j=0

(
AT − µI

)j

 G (70)
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Bias of Penalty-Based Algorithms

In the limit, we then have:

lim
i→∞

Wi = µ

 i−1∑
j=0

(
AT − µI

)j

 G = µ
(
I −

(
AT − µI

))−1
G = µ

(
(1 + µ)I −AT

)−1
G

(71)

By exploiting the Jordan decomposition of the primitive matrix A, we can expand this
expression and conclude:

K∑
k=1

∥∥∥∥ lim
i→∞

wk,i − gk

∥∥∥∥2 =O(µ2) (72)

Which means that we pay for the ability to track time-varying signals with a bias that is O(µ2)
when the signals are constant.
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Exact Dynamic Consensus Algorithm

The previous discussion motivates the question, whether it is possible to design a consensus
algorithm over a graph, which is able to average a constant signal perfectly, while having some
ability to track slowly time varying signals. It turns out that this is possible, and this algorithm
can be derived using control-theoretic tools [Kia et al 2019] or primal-dual techniques we will develop
in the next lecture. For the time being, we simply list the exact dynamic consensus algorithm,
which takes the form:

wk,i =
∑
ℓ∈Nk

aℓk wℓ,i−1+gk,i − gk,i−1 (73)

or in network level quantities:

Wi = AT Wi−1+Gi − Gi−1 (74)
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Constant Signals

We begin by establishing the ability of the dynamic consensus (74) to compute exactly the
mean of a constant signal over the graph. To this end, let Gi ≜ G, and we find:

Wi = AT Wi−1+G − G = AT Wi−1 (75)

which corresponds precisely to the static consensus algorithm (36). Under the initialization
W0 ≜ G, we conclude that the evolution of the dynamic consensus algorithm (74) matches that
of the static consensus algorithm (36), provided that the signal of interest Gi−1 is constant.
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Tracking Random Walks

The question now is whether, and how well, the dynamic variant of the consensus algorithms is
able to track the mean of the signal of interest when it is time-varying. To quantify the
tracking performance, we will employ the simple random-walk model:

Gi = Gi−1 + vi (76)

where vi ∈ RMK denotes a random driving variable with mean µv = Evi and variance
σ2
v = E∥vi − µv∥2. We note that, while the driving term vi is presumed stationary, the

resulting dynamics of Gi are not. Under this model, we have:

Wi = AT Wi−1+Gi − Gi−1 = AT Wi−1+vi (77)

Stefan Vlaski and Ali H. Sayed Lecture 3: Graphs IEEE ICASSP 2024 Short Course 45 / 53



Tracking Analysis: Centroid

We proceed similarly to the analysis of the static consensus algorithm, and decompose the
evolution of the local estimates into the network centroid wc,i ≜

∑K
k=1 pk wk,i and the

deviations from the centroid wk,i−wc,i. We begin with the centroid, which evolves according
to:

wc,i = wc,i−1+
K∑
k=1

pkvk,i (78)
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Tracking Analysis: Centroid

In comparison, for the spatial average of the time varying signal Gi, we have:

gc,i ≜
K∑
k=1

pkgk,i =
(
pT ⊗ IM

)
Gi

(76)
=

(
pT ⊗ IM

)
(Gi−1 + vi)

=

K∑
k=1

pkgk,i−1 +

K∑
k=1

pkvk,i

= gc,i−1 +

K∑
k=1

pkvk,i (79)

Comparing the expression (78) for wc,i with (79) for gc,i, we find that the recursions match
exactly.
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Tracking Analysis: Centroid

We can hence conclude that, as long as the {wk,0}Kk=1 are initialized appropriately, namely to
wk,0 = gk,0, we have with probability one:

wc,i = gc,i ⇐⇒
K∑
k=1

pkwk,i =

K∑
k=1

pkgk,i (80)

This fact is analogous to relation (41) for the static consensus algorithm, with the important
advantage that the correction term Gi−1 − Gi−2 in (74) allows the dynamic algorithm to track
a time-varying centroid. Perhaps surprisingly, the network centroid wc,i under this
construction tracks the signal centroid gc,i perfectly, and with probability one, independently
of the power or variance of the random variable vi driving the random walk.

Stefan Vlaski and Ali H. Sayed Lecture 3: Graphs IEEE ICASSP 2024 Short Course 48 / 53



Tracking Analysis: Deviation from the Centroid
This fact of course does not imply that any given agent wk,i is necessarily able to track the
signal centroid gc,i well. We now proceed to study the deviation of local estimates wk,i around
the network centroid wc,i under the random walk model (76) and the dynamic consensus
algorithm (74) to establish this stronger result. We have:

Wi−1⊗wc,i

= Wi−
(
1pT ⊗ IM

)
Wi

=AT Wi−1+vi −
(
1pT ⊗ IM

)(
AT Wi−1+vi

)
=

(
AT − 1pT ⊗ IM

)
Wi−1+

(
IMK − 1pT ⊗ IM

)
vi (81)

Upon iterating and taking the limit as i → ∞, we have:

lim
i→∞

E∥Wi−1⊗wc,i∥2 ≤
1

1− λ2

 ∞∑
j=0

λj
2

σ2
v =

σ2
v

(1− λ2)
2 (82)
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Simulation Study

A key take-away of this lecture is that the rate at which average consensus is achieved over a
graph is determined by its mixing rate. We illustrate this numerically here. To this end, we
generate first an unweighted Erdos-Renyi graph, where cℓk = 1 with probability pedge. To
ensure the graph is undirected, we set:

C ⇐=
1

2

(
C + CT

)
(83)

Given this symmetric adjacency matrix, we can then construct a symmetric combination
matrix A = AT using the Metropolis-Rule. The mixing rate in that case is given by:

λ2 = ρ

(
A− 1

K
11T

)
(84)

We can control λ2 indirectly by adjusting the edge probability pedge.
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Convergence of the Consensus Averaging Algorithm for Differing Network
Connectivities
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Conclusion

We introduced graphs and their (spectral) properties. To key quantities are:
▶ The mixing rate: Quantifies how well connected the graph is, and how quickly information

spreads.
▶ The agent centrality: Quantifies the influence an agent has over the limiting behavior of the

algorithm.

We illustrated these in the context of averaging over graphs, a simple task that
nevertheless captures some of the fundamental trade-offs.

We also developed dynamic consensus algorithms, which allow for the tracking of
averages of time-varying signals.
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