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Objective of this lecture

Last lecture we saw how risk minimization arises naturally as a formalized learning
problem.

We also saw how models can be learned through stochastic gradient algorithms.
▶ Performance was limited by a trade-off between per-iteration complexity, convergence rate

and steady-state performance.

In this lecture we will see how multiple agents can work together via a fusion center to
improve on these trade-offs.

Key-take aways will be:
▶ Linear performance gains in centralized (synchronous) and homogeneous structures.
▶ Cost of heterogeneity when agents have differing local data distributions.
▶ The effect of partial participation and local updates.
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Non-cooperative risk minimization

Let us recall the empirical risk minimization problem:

w⋆
k = argmin

w
Jk(w) = argmin

w

1

N

N∑
n=1

Q(w;xk,n) (1)

Here, w denote model parameters, xk,n denotes the n-th sample available to agent k, and
Q(w;xk,n) quantifies the fit of model w to the data xk,n. The model w⋆

k is then optimal based
on the data available to agent k. We can pursue w⋆

k using the gradient-descent algorithm:

wi = wi−1 − µ∇Jk(wi−1) = wi−1 −
1

N

N∑
n=1

∇Q(wi−1;xk,n) (2)

or its stochastic variants introduced the last lecture.
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Aggregate Optimization Problems
Instead of pursuing locally optimal models, we can instead define a globally optimal model:

w⋆ = argmin
w
J(w) = argmin

w

1

KN

K∑
k=1

N∑
n=1

Q(w;xk,n) (3)

In defining J(w), we are now averaging the loss Q(w;xk,n) over both the agent index k and
the sample index n, hence aggregating all data across the network. For this reason we refer to
w⋆ as the globally optimal model. Comparing the local and global objectives (1) and (3), we
observe the useful relationship:

J(w) =
1

K

K∑
k=1

Jk(w) (4)

We refer to problem (3), which is equivalent to (4), as the aggregate optimization problem,
since it aggregates data from all agents. It is also frequently referred to in the literature as the
consensus optimization problem, since we are looking for a single model w that fits data across
the entire collection of agents optimally.
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Centralized Gradient Descent

In the absence of constraints on the exchange of information, we can apply gradient-descent
directly to the consensus problem (4) and develop the recursion:

wi = wi−1 − µ∇J(wi−1)

= wi−1 −
µ

K

K∑
k=1

∇Jk(wi−1)

= wi−1 −
µ

KN

K∑
k=1

N∑
n=1

∇Q(wi−1;xk,n) (5)

Recursion (5) provides an algorithm for solving the consensus optimization problem, but
requires central aggregation of the raw data xk,n in order to compute the aggregate gradient
1

KN

∑K
k=1

∑N
n=1∇Q(wi−1;xk,n).
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Aggregate Objectives for Expected Risk Minimization

As we saw last lecture, we may also be interested in local objectives which take the form of an
expected risk:

Jk(w) = Exk
Q(w;xk) (6)

Recall can be viewed as a generalization of the empirical risk minimization problem (1).
Indeed, if we define:

xk =


xk,1, with probability 1

N ,

xk,2, with probability 1
N ,

...

xk,N , with probability 1
N .

(7)

we can verify that (6) reduces to (1).
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Aggregate Objectives for Expected Risk Minimization
In the case of empirical risk minimization problems, the consensus problem (4) carries a clear
interpretation as the aggregate empirical risk the the losses are averaged globally across all
data available at all agents. Analogously to (4), we can define a consensus problem for
expected local risks (6):

J(w) =
1

K

K∑
k=1

Jk(w) =
1

K

K∑
k=1

Exk
Q(w;xk) (8)

To develop an interpretation for (8), we introduce a random variable x as a mixture of the
local data xk as:

x =


x1, with probability 1

K ,

x2, with probability 1
K ,

...

xK , with probability 1
K .

(9)

We can then verify that J(w) = ExQ(w;x).
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Centralized Gradient Descent: Parameter Exchange
Applying gradient-descent directly to the consensus problem (4), we obtain the recursion:

wi = wi−1 −
µ

K

K∑
k=1

∇Jk(wi−1) (10)

Suppose a fusion center sends the current global estimate wi−1 to all agents. Then, each
agent can perform a local update by descending along its own local risk function based on its
private data:

ψk,i = wi−1 − µ∇Jk(wi−1) (11)

The locally updated models are sent back to the fusion center, where they are aggregated
according to:

wi =
1

K

K∑
k=1

ψk,i (12)

Combining (11) and (12), we can verify that wi = wi−1 − µ
K

∑K
k=1∇Jk(wi−1).
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Centralized Gradient Descent: Gradient Exchange

As an alternative to the distributed implementation (11)–(12), we can implement (10) in a
distributed manner by exchanging gradients instead of models. In this setting, at iteration i,
the parameter server sends the prior model wi−1 to all agents. Each agent computes the local
gradient, evaluated at the model wi−1:

gk,i = ∇Jk(wi−1) (13)

Each agent then sends back the local gradient to the parameter server, where the update is
computed via:

wi = wi−1 −
µ

K

K∑
k=1

gk,i (14)
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Example: Fusing models for logistic regression
We consider logistic regression problem across K agents with local risk functions given by:

Jk(w) =
ρ

2
∥w∥2 +

1

N

N∑
n=1

ln
(
1 + e−γk,nh

T
k,nw

)
(15)

We may then pursue a minimizer to the aggregate risk

J(w) =
ρ

2
∥w∥2 +

1

KN

K∑
k=1

N∑
n=1

ln
(
1 + e−γk,nh

T
k,nw

)
(16)

by sharing local iterates as follows:

ψk,i = (1− µρ)wi−1 + µ

(
1

N

N∑
n=1

γk,nhk,n

1 + eγk,nh
T
k,nwi−1

)
(17)

wi =
1

K

K∑
k=1

ψk,i (18)
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Convergence of the Centralized Gradient Descent Algorithm

Noting that both distributed implementations are equivalent reformulations of the classical
gradient descent recursion on J(w), it follows that we can directly apply the gradient descent
convergence guarantee to conclude that the iterates wi will converge to:

w⋆ ≜ argmin
w

1

K

K∑
k=1

Jk(w) (19)

linearly, i.e.:

∥w⋆ − wi∥2 ≤ λ ∥w⋆ − wi−1∥2 (20)

where λ ≜ 1− 2µν + µ2δ2 and ν and δ correspond to the strong convexity and smoothness
constants of the aggregate cost J(w).
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Centralized Stochastic Gradient Algorithms
We will continue to study aggregate optimization problems in a multi-agent systems, but now
consider the setting where agents no longer have access to exact gradients, and instead employ
local gradient approximations as introduced in the last lecture. We thus consider consensus
optimization problems of the form:

wo ≜ argmin
w

1

K

K∑
k=1

Jk(w) (21)

where the local risks take the form

Jk(w) = Exk
Q(w;xk) (22)

We begin by applying the stochastic gradient algorithm to (21). Given local gradient

approximations ∇̂Jk(w), we may construct an approximation for the global gradient ∇J(w)
by using

∇̂J(w) = 1

K

K∑
k=1

∇̂Jk(w) (23)
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Gradient Noise Bounds for the Induced Gradient Approximation

Suppose each local approximation ∇̂Jk(w) satisfies the zero-mean and noise variance
conditions introduced in the last lecture. For simplicity, we restrict ourselves in this section to
gradient approximations with α2 = γ2 = 0 resulting in:

E
{
∇̂Jk(wi−1)|wi−1

}
=∇Jk(wi−1) (24)

E

{∥∥∥∇̂Jk(wi−1)−∇Jk(wi−1)
∥∥∥2|wi−1

}
≤ β2k∥wo

k −wi−1 ∥2 + σ2k (25)

We index the noise constants β2k, σ
2
k by k to emphasize the fact that different agents may have

access to gradient approximations of varying quality. Note that the relative component
β2k∥wo

k −wi−1 ∥2 is measured relative to wo
k, which denotes the local minimizer:

wo
k ≜ argmin

w
Jk(w) (26)
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Gradient Noise Bounds for the Induced Gradient Approximations
We can verify that (23) is unbiased, i.e.:

E
{
∇̂J(wi−1)|wi−1

}
=

1

K

K∑
k=1

∇Jk(wi−1) (27)

For the variance, assuming the data is independent between agents, we have:

E

{∥∥∥∇̂J(wi−1)−∇J(wi−1)
∥∥∥2|wi−1

}
≤ 1

K2

K∑
k=1

(
β2k∥wo

k −wi−1 ∥2 + σ2k

)
(28)

We can expand:

E

{∥∥∥∇̂J(wi−1)−∇J(wi−1)
∥∥∥2|wi−1

}
≤ β2∥wo −wi−1 ∥2 + σ2 (29)

where:

β2 =
1

K2

(
K∑
k=1

2β2k

)
, σ2 =

1

K2

K∑
k=1

(
2β2k∥wo

k − wo∥2 + σ2k

)
(30)
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Centralized Stochastic Gradient: Parameter Exchange

Each agent receives the current model wi−1 from the fusion center and performs a local
update using its local gradient approximation:

ψk,i = wi−1−µ∇̂Jk(wi−1) (31)

The locally updated models are sent to the fusion center, where they are aggregated according
to:

wi =
1

K

K∑
k=1

ψk,i (32)

It can be verified that (31)–(32) is equivalent to stochastic gradient descent on the aggregate
objective, while requiring only the exchange of intermediate models ψk,i.
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Centralized Stochastic Gradient: Gradient Exchange
We can also implement the stochastic gradient algorithm in a distributed manner by instead
exchanging gradient approximations. Again, at iteration i, the parameter server sends the prior
model wi−1 to all agents. Each agent computes the local gradient, evaluated at the model
wi−1:

gk,i = ∇̂Jk(wi−1) (33)

Each agent then sends back the local gradient to the parameter server, where the update is
computed via:

wi = wi−1−
µ

K

K∑
k=1

gk,i (34)

It is again straightforward to verify that the resulting recursion is equivalent stochastic
gradient on the aggregate loss. We illustrate a schematic of the centralized stochastic gradient
algorithm with model exchanges on the next slide.
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Visualization of the Centralized Stochastic Gradient Algorithm

Figure: A schematic representation of the centralized stochastic gradient algorithm (31)–(32) with
model exchanges.
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Example: Mean-square-error

Suppose each agent observes data arising from a linear regression model of the form:

γk = hT
kw

o + vk (35)

Note that while the parameter wo in this example is common to all agents, the random
variables hk, vk, and hence γk may follow distinct distributions. We may then formulate the
local risks:

Jk(w) =
1

2
E∥γk − hT

kw∥2 (36)

with elementary gradient approximation given by

∇̂Jk(w) =∇Q(w;hk,i,γk,i) = −hk,i

(
γk,i − hT

k,iw
)

(37)
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Example: Mean-Square Error

This leads to a centralized implementation of the stochastic gradient recursion as follows:

ψk,i = wi−1+µhk,i

(
γk,i − hT

k,iwi−1

)
(38)

wi =
1

K

K∑
k=1

ψk,i (39)
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Performance of the Centralized Stochastic Gradient Algorithm

Since the stochastic gradient algorithms presented here, whether implemented via parameter
or gradient exchange, yield identical iterates, and they correspond to employing the gradient
approximation (23), we may infer the resulting performance from the convergence guarantee of
stochastic gradient algorithms in the previous lecture. Using (30), we find:

lim
i→∞

E∥wo −wi ∥2 ≤
µ

νK2

K∑
k=1

(
2β2k∥wo

k − wo∥2 + σ2k

)
(40)
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Linear Gain for Homogeneous Agents

A useful simplification occurs if we consider the setting of perfectly homogeneous agents. In a
homogeneous setting, the data xk observed by each agent is identically distributed, and all
gradient approximations take the same form. It follows that:

Jk(w) = Exk
Q(w;xk) = Exℓ

Q(w;wℓ) (41)

for all k, ℓ, and hence Jk(w) = J(w) for all k. Similarly, we have wo
k = wo and σ2k = σ21. Then

expression (40) simplifies to

lim
i→∞

E∥wo −wi ∥2 ≤
µσ21
νK

(42)

We conclude that the limiting performance of the centralized architecture improves at a rate
of 1

K , where K is the number of agents. This fact is referred to as linear gain in distributed
systems and is an important motivator for agents to participate in learning.
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Numerical Results

Figure: A demonstration in linear gain in performance of the centralized stochastic gradient algorithm.
The steady-state error decays by a factor of 10 as the number of participating agents increases by a
factor of 10. This is predicted by (42).
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Recap and Outlook

We have seen that we can implement (stochastic) gradient algorithms in a centralized
manner by relying only on the exchange of models or gradients in place of raw data.

For homogeneous agents, this resulted in linear performance gains.

In practice, it is not desirable to require regular and constant participation of agents.
▶ Consider for example wireless sensors or mobile devices with limited power and

communication capabilities.

We now introduce to types of imperfections and study their impact on learning dynamics:
▶ Partial participation (asynchronous learning)
▶ Local updates (federated learning)
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Agent Sampling
Instead of involving all agents at each iteration, as in the case of (31)–(32), we will now study
an asynchronous variant where at each iteration a single agent is selected, and the parameter
is only updated by the selected agent. To make this description more precise, we introduce the
random index ki, which denotes the agent picked at time instant i. This index follows a
uniform distribution:

ki =


1, with probability 1

K ,

2, with probability 1
K ,

...

K, with probability 1
K .

(43)

The fusion center then provides the selected agent ki with the previous model wi−1. Agent ki
updates the model:

ψki,i = wi−1−µ∇̂Jki
(wi−1) (44)
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Agent Sampling

The sampled agent send it back to the server where the global model is updated to

wi = ψki,i (45)

We can write (44)–(45) compactly as:

wi = wi−1−µ∇̂Jki
(wi−1) = wi−1−µ∇̂J(wi−1) (46)

where we defined:

∇̂J(wi−1) = ∇̂Jki
(wi−1) (47)
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Visualization of an Asynchronous Stochastic Gradient Algorithm

Active agent Idle agent

Figure: A schematic representation of the asynchronous stochastic gradient algorithm (44)–(45).
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Gradient Noise induced by Agent Sampling

In order to study the performance of this asynchronous algorithm, we need to establish
conditions on the gradient noise induced by the approximation (47). We can verify:

E
{
∇̂J(wi−1)|wi−1

}
=∇J(wi−1) (48)

E

{∥∥∥∇̂J(wi−1)−∇J(wi−1)
∥∥∥2|wi−1

}
≤ β2∥wo −wi−1 ∥2 + σ2 (49)

where defined:

β2 =
1

K

K∑
k=1

(
2β2k + 4δ2k + 2δ2

)
(50)

σ2 =
1

K

K∑
k=1

(
2
(
β2k + 2δ2k

)
∥wo

k − wo∥2 + σ2k

)
(51)
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Performance of Asynchronous Stochastic Gradient

From the stochastic gradient theorem, we can then conclude:

lim sup
i→∞

E∥wo −wi ∥2 ≤
µ

νK

K∑
k=1

(
2
(
β2k + 2δ2k

)
∥wo

k − wo∥2 + σ2k

)
(52)

In the homogeneous case where wo
k = wo, σ2k = σ21, this simplifies to:

lim sup
i→∞

E∥wo −wi ∥2 ≤
µσ21
ν

(53)

which is the same performance as a non-cooperative approach. This is to be expected, as only
a single agent is participating in the learning protocol at any given iteration.
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Cost of Heterogeneity

A second insightful simplification of the performance bound (52) occurs when considering

exact gradient approximations ∇̂Jk(wi−1) = ∇Jk(wi−1), which guarantees β2k = σ2k = 0.
Nevertheless, as long as agents are heterogeneous and wo ̸= wo

k, we find:

lim sup
i→∞

E∥wo −wi ∥2 ≤
µ

νK

K∑
k=1

4δ2k∥wo
k − wo∥2 (54)

where δ2k are the Lipschitz constants of the local true gradients. It follows that even if every
agent in the network is employing an exact gradient, the asynchrony of the system introduces
a randomness into the recursion of the model, and ultimately results in deterioration of
performance at steady-state. This performance deterioration grows with the system
heterogeneity, captured in ∥wo

k − wo∥2, while vanishing for homogeneous systems. We will see
this theme appear repeatedly in future lectures of this course when studying federated and
fully decentralized structures.
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Within- and cross-agent variance

The level of heterogeneity, which is measured by 1
K

∑K
k=1 4δ

2
k∥wo

k − wo∥2, is sometimes
referred to in the literature as cross-agent or inter-agent variance. This is to distinguish it from
the within- or intra-agent variance in the local gradient approximations ∇̂Jk(wi−1), which
corresponds to the variance of the local gradient noise, and is a function of the local data
distributions xk. Strictly speaking, since the quantities wo

k and wo are generally deterministic
and fixed a priori, the term “variance” a misnomer, and “variation” or “heterogeneity” are
more accurate. If we interpret wo

k as samples from a common distribution with mean wo, then
1
K

∑K
k=1 4δ

2
k∥wo

k − wo∥2 can more accurately be interpreted as a weighted, finite-sample
approximation of variance of the underlying generating distribution.
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From Centralized to Federated Learning

A common key property the centralized algorithms we have studied so far is that in all cases:

E {wi |wi−1} = wi−1 − µ∇J(wi−1) = wi−1−
µ

K

K∑
k=1

∇Jk(wi−1) (55)

We exploited this fact up until now to develop performance guarantees for a number of
stochastic centralized algorithms by simply quantifying that variance of the induced gradient
noise process, and subsequently appealing to standard convergence guarantees for stochastic
gradient descent.

We will now allow for more general subsampling of L out of K agents.

Additionally, we allow agents to take multiple local update steps in-between
communication exchanges, which is characteristic of federated learning. This causes (55)
to no longer hold.
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Federated Averaging

The parameter server continues to maintain a global model wi. At every iteration i, only a
subset of L agents, collected in Li will be selected to participate. We will generate the set Li

by sampling uniformly with equal probability and without replacement, so that:

P {k ∈ Li} =
L

K
(56)

Now, at time i, each selected agent k ∈ Li receives the model wi−1 from the parameter
server, initializes ϕk,0 = wi−1 and then performs Ek local updates of the form:

ϕk,e = ϕk,e−1 − µk∇̂Jk(ϕk,e−1) (57)

ψk,i = ϕk,Ek
(58)

In (57) we utilize e to index the inner iteration of local gradient updates, which occurs
between every outer time step i− 1 and i.
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Federated Averaging

The intermediate models are sent back to the server, where aggregation takes the form:

wi =
1

L

∑
k∈Li

ψk,i (59)

Before we proceed with studying the learning dynamics of the federated algorithm (57)–(59),
it is important to comment on some important details in the recursions. First, we allow for
differing numbers of local updates Ek at different agents. This is important to account for
different capabilities across different agents. Some agents may be able to perform more local
updates in a given period of time, for example due to increased computational capabilities.
Second, we allow for varying local step-size parameters µk. This additional degree of freedom
will be necessary to control the relative influence of agents with different number of local
updates Ek.
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High-Level Insight
While we will present a formal guarantee of convergence of the Federated Averaging
algorithm (57)–(59) further ahead, we will first reformulate the recursions in an equivalent
form that is less amenable to distributed implementation, but provides a high-level intuition
behind the learning dynamics of federated averaging. These insights will serve two purposes.
First, it will suggest a choice for the local step-sizes µk as a function of the number of local
updates Ek. Second, it will provide a sketch for the convergence analysis that leads to the
theorem we present later.
Iterating (57) and plugging the final result into (57), we can find for the locally adapted
models ψk,i:

ψk,i = wi−1−µk
Ek∑
e=1

∇̂Jk(ϕk,e−1)

= wi−1−µkEk ·
1

Ek

Ek∑
e=1

∇̂Jk(ϕk,e−1) (60)
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High-Level Insight
Inspection of this form reveals that (60) resembles a mini-batch update with increased

step-size µkEk, where we are averaging Ek mini-batch approximations ∇̂Jk(ϕk,e−1). One key

detail to note, however, is that the gradient approximations ∇̂Jk(ϕk,e−1) are all evaluated at
different iterates ϕk,e−1, hence

1

Ek

Ek∑
e=1

∇̂Jk(ϕk,e−1) ̸=
1

Ek

Ek∑
e=1

∇̂Jk(wi−1) (61)

and we are not performing a true mini-batch gradient update. Instead, we can interpret the
federated local update as a perturbed mini-batch update by reformulating:

ψk,i = wi−1−µkEk ·
1

Ek

Ek∑
e=1

∇̂Jk(wi−1)

+ µkEk ·
1

Ek

Ek∑
e=1

(
∇̂Jk(wi−1)− ∇̂Jk(ϕk,e−1)

)
(62)
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Step-Size Normalization for Federated Averaging

To develop appropriate expressions for the local step-sizes µk, we first introduce the following
quantities for ease of notation:

∇̂Jk
Ek

(wi−1) ≜
1

Ek

Ek∑
e=1

∇̂Jk(wi−1) (63)

dk,i =
1

Ek

Ek∑
e=1

(
∇̂Jk(ϕk,e−1)− ∇̂Jk(wi−1)

)
(64)

We can then write (60) more compactly:

ψk,i = wi−1−µkEk∇̂Jk
Ek

(wi−1)− µkEkdk,i (65)

in terms of the mini-batch gradient approximation ∇̂Jk
Ek

(wi−1) and the perturbation dk,i.
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Step-Size Normalization for Federated Averaging

After aggregation following (59), we then have at the parameter server:

wi =
1

L

∑
k∈Li

(
wi−1−µkEk∇̂Jk

Ek
(wi−1)− µkEkdk,i

)
= wi−1−

1

L

∑
k∈Li

µkEk∇̂Jk
Ek

(wi−1)−
1

L

∑
k∈Li

µkEkdk,i

(a)
= wi−1−

µ

L

∑
k∈Li

µk
µ
Ek∇̂Jk

Ek
(wi−1)−

1

L

∑
k∈Li

µkEkdk,i (66)

where in (a) we introduced an arbitrary common step-size µ > 0, and normalized the local
step-sizes inside the sum by the same factor µ, leaving the recursion unchanged.

Stefan Vlaski and Ali H. Sayed Lecture 2: Learning with a Fusion Center IEEE ICASSP 2024 Short Course 37 / 52



Step-Size Normalization for Federated Averaging
We can then introduce the global quantities:

∇̂J
fed

(wi−1) ≜
1

L

∑
k∈Li

µk
µ
Ek∇̂Jk

Ek
(wi−1) (67)

di ≜
1

L

∑
k∈Li

µkEkdk,i (68)

and write more compactly:

wi = wi−1−µ∇̂J
fed

(wi−1)− µdi

= wi−1−µ∇J(wi−1)− µ si(wi−1)− µdi (69)

with the gradient noise term si(wi−1) defined as before:

si(wi−1) = ∇̂J
fed

(wi−1)−∇J(wi−1) (70)
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Step-Size Normalization for Federated Averaging

One of the requirements we have so far placed on gradient approximations is that they are
unbiased, which implies that the gradient noise process si(wi−1) they induce has mean zero.
To ensure:

E
{
∇̂J

fed
(wi−1)|wi−1

}
= ∇J(wi−1) (71)

we need to set:

µk
µ
Ek = 1 ⇐⇒ µk =

µ

Ek
(72)
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Mean-square-behavior of federated averaging

Let the individual objectives Jk(w) be νk-strongly convex and δk-smooth, and the aggregate
objective J(w) be ν-strongly convex with δ-Lipschitz gradients. Suppose further that the local

gradient approximations ∇̂Jk(·) with constants α2
k = γ2k = 0 and β2k, σ

2
k ≥ 0. Then, the error

w̃i ≜ wo −wi of the iterates generated by the federated averaging algorithm (57)–(59) satisfy:

E∥w̃i∥2 ≤
(√

λ+O(µ3)
)
E∥w̃i∥2 + 2µ2σ2fed +O(µ3) (73)

where

√
λ =

√
1− 2µν + µ2

(
δ2 + β2fed

)
≤ 1− µν +

µ2

2

(
δ2 + β2fed

)
(74)

Then, for sufficiently small step-sizes it holds that
√
λ+O(µ3) < 1 and we can iterate this

relation to find:

E∥w̃i∥2 ≤ (
√
λ+O(µ3))i∥w̃0∥2 +

4µσ2fed
ν

+O(µ2) (75)
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Homogeneous Settings

It is instructive to simplify the performance expression this theorem to illustrate the benefit of
employing local updates, and allowing for partial participation. In particular, we know
from (75), that the limiting performance of the federated averaging algorithm is given by:

lim sup
i→∞

E∥w̃i∥2 ≤ O

(
µσ2fed
ν

)
+O(µ2) (76)

where we used the O(·) notation to remove multiplying constants and higher-order terms in
the step-size. The key quantity in this expression, analogously to the stochastic gradient
algorithms seen earlier, is the absolute gradient noise power σ2fed. We have:

σ2fed =
1

KL

K∑
k=1

(
2
β2k
Ek

∥wo
k − wo∥2 +

σ2k
Ek

)
+

1

KL

K − L

K − 1

K∑
k=1

4δ2k∥wo
k − wo∥2 (77)
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Homogeneous Settings
When agents are observing data following the same distribution, it follows that wo

k = wo, and
hence:

σ2fed =
1

KL

K∑
k=1

σ2k
Ek

(78)

Let us further assume that the gradient approximations constructed by each agent are
identical, so σ2k = σ2 and Ek = E. Then:

σ2fed =
1

KL

K∑
k=1

σ2

E
=

1

L

σ2

E
(79)

Hence, the limiting performance of the federated averaging algorithm in this homogeneous
case is given by:

lim sup
i→∞

E∥w̃i∥2 ≤ O

(
µσ2

νLE

)
+O(µ2) (80)
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Cost of Heterogeneity

Similarly to before, we can simplify to the heterogeneous setting with exact gradients by
letting ∇̂Jk(wi−1) = ∇Jk(wi−1), which guarantees β2k = σ2k = 0. Nevertheless, as long as
agents are heterogeneous and wo ̸= wo

k, we find:

σ2fed =
1

KL

K − L

K − 1

K∑
k=1

4δ2k∥wo
k − wo∥2 (81)

This means that again the subsampling of agents, when they are heterogeneous, can lead to
deterioration in performance. This can be addressed by adapting variance reduction techniques
to the federated setting, see, e.g., SCAFFOLD [Karimireddy et al, 2020].
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Lab #1: Learning with a Fusion Center

We will now present a simulation study that allows us to illustrate some of the key-take aways
from the first two lectures. Jupyter notebooks to follow along and play with parameters are
provided on the course website, although participants are encouraged to develop their own
code base. Specifically, we will provide a collection of K agents with data following the linear
model:

γk = hT
kw

o
k + vk (82)

with isotropic regressors hk ∼ N (0, σ2hIM ) ∈ RM and Gaussian noise vk ∼ N (0, σ2v) ∈ R.
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Controlling Heterogeneity

To control the heterogeneity of the local models wo
k, we sample them from the distribution

N (1, σ2wIM ) ∈ RM . In this manner, by setting σ2w = 0, we recover a homogeneous data
setting with wo

k = wo = 1, while σ2w > 0 results in heterogeneous models with variance defined
by σ2w. Each local loss is given by:

Jk(w) =
1

2
E∥γk − hT

kw∥2 (83)

It can then be verified that wo
k = argminw Jk(w) and w

o = argminw J(w), where

J(w) = 1
K

∑K
k=1 Jk(w). Since agents have common regressor covariances Rh, it can be seen

from the optimality conditions that wo = 1
K

∑K
k=1w

o
k. Each agent constructs local gradient

approximations:

∇̂Jk(wk,i−1) = −hk,i

(
γk,i − hT

k,iwk,i−1

)
(84)
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Fusion-Center Based Algorithms

The federated averaging algorithm in this setting amounts to:

ϕk,e = ϕk,e−1 +
µ

E
hk,i

(
γk,i − hT

k,iϕk,e−1

)
, e = 1, . . . , E (85)

ψk,i = ϕk,Ek
(86)

wi =
1

L

∑
k∈Li

ψk,i (87)

Note that by setting L = K,E = 1, we recover the centralized stochastic gradient algorithm
with full participation, while L = 1, E = 1 recovers the asynchronous variant where one agent
is sampled.
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Observation #1: Heterogeneity hurts Performance even of Centralized
Stochastic Gradient

Consistent with σ2cent =
1
K2

∑K
k=1

(
2β2k∥wo

k − wo∥2 + σ2k

)
.

0 200 400 600 800 1000
Iteration

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

M
SD

 in
 d

B

K = L = 100, E = 1, σ2w = 0

0 200 400 600 800 1000
Iteration

10−5

10−4

10−3

10−2

10−1

100

M
SD

 in
 d

B
K = L = 100, E = 1, σ2w = 0.1

Stefan Vlaski and Ali H. Sayed Lecture 2: Learning with a Fusion Center IEEE ICASSP 2024 Short Course 47 / 52



Observation #2: For homogeneous objectives, partial participation has
effect proportional to rate of participation

Consistent with σ2fed = 1
KL

∑K
k=1

σ2

E = 1
L

σ2

E .
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Observation #3: For homogeneous objectives, local updates benefit
proportional to the number of local updates

Consistent with σ2fed = 1
KL

∑K
k=1

σ2

E = 1
L

σ2

E .
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Observation #4: For heterogeneous objectives, the benefit of local
updates does not outweigh the cost of partial participation

σ2fed = 1
KL

∑K
k=1

(
2
β2
k

Ek
∥wo

k − wo∥2 + σ2
k

Ek

)
+ 1

KL
K−L
K−1

∑K
k=1 4δ

2
k∥wo

k − wo∥2.
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Conclusion and Outlook

We have seen how multiple agents can utilize a fusion center to collaborate in solving
learning problems. This gave rise to a number of structures:

▶ Centralized (full and regular participation)
▶ Asynchronous (agents are sampled)
▶ Federated (agents are sampled, local updates)

In the best (i.e., homogeneous) case, this results in performance gains proportional to the
number of participating agents, and the number of local updates.

Heterogeneity deteriorates performance, but can be tackled via variance reduction.

From tomorrow, we will focus on decentralized learning where agents rely on peer-to-peer
interactions over a graph.
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