
Multi-Agent Optimization and Learning
Lecture 1: Foundations

Stefan Vlaski† and Ali H. Sayed⋆

†Department of Electrical and Electronic Engineering, Imperial College London, UK
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Multi-Agent Systems with Dispersed Data and Capabilities

Sensor networks

Autonomous vehicles

Social networks

Power grids

Mobile devices

Drone swarms

Many more
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Objectives of this Course

Objective

To provide attendees with a fundamental understanding and the resulting intuition about
distributed algorithms and the resulting performance trade-offs in intelligent multi-agent
systems.

Hopefully, by the end of this course:

Those interested in developing distributed algorithms will have the tools needed to
rigorously develop and analyze new algorithms for distributed learning.

Those interested in applying distributed algorithms will have an understanding of
fundamental properties that allow for informed decisions on when and how to use and
adapt distributed algorithms in their domain.
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Structure of this course

Lecture 1: Foundations
▶ Taxonomy, inference, learning and optimization, (stochastic) gradient descent.

Lecture 2: Learning with a fusion center
▶ Partial participation, local updates, heterogeneity and their impact on performance.

Lecture 3: Graphs and their role decentralized processing
▶ Graph spectral theory, averaging over graphs.

Lecture 4: Algorithms for decentralized optimization and learning
▶ Penalty-based (Distributed gradient descent and diffusion), primal-dual (EXTRA and Exact

diffusion), and gradient-tracking (DIGing, NEXT and AugDGM)

Lecture 5: Performance guarantees and trade-offs
▶ Effect of heterogeneity and bias-correction, graph connectivity, gradient noise.

Lecture 6: Advanced topics and open problems
▶ Multi-task and meta-learning, compression, privacy.
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Outline of This Lecture

In this lecture we introduce some foundational concepts in a manner that will generalize and
translate to distributed structures in the rest of the course.

Components of a multi-agent system, and a taxonomy of distributed algorithms

Inference, Learning and Optimization

Deterministic and Stochastic Gradient Algorithms

Centralized Learning
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Components of a Multi-Agent System
Agents: Individual entity with basic capabilities to observe data, perform computations
and communicate. Depending on the application, the term “agent” can represent a
multitude of things, ranging from a sensor, to mobile devices such as phones, autonomous
vehicles and drones, or humans.

Data: Agents will be equipped with the ability to observe the world around them, and
these observations will be captured in the form of data. These data may be available as a
batch of fixed-size, or be observed on the fly. We will model data as random variables.

Objective: Agents will aim to achieve some objective, which will be represented as an
optimization problem.

Model: In most applications, agents will maintain and refine a model, captured through
parameters, which reconciles observed data and the objective. Models will be learned by
adjusting the parameterization to optimize the agent’s objective.

Network: We will represent communication links between agents through a network
topology, which will place limits on the flow of information. We elaborate on some typical
structures and taxonomy in the next slides.
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Figure: Non-cooperative approaches serve as a worst-case baseline.
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Figure: Centralized structures serve as a best-case baseline.
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Figure: Decentralized structures avoid a fusion center.
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Maximum A Posteriori Estimation

If we are provided with the conditional distribution fγ|h(γ|h) along with a single realization of

the feature h ∈ RMh , it is quite natural to estimate γ ∈ RMγ as the most likely outcome
given h. We can express this formally as:

γ⋆ ≜ argmax
γ∈Γ

fγ|h(γ|h) (1)

The conditional distribution fγ|h(γ|h) is frequently referred to as the posterior distribution of
γ, making γ⋆ the maximum a posteriori (MAP) estimate of γ given h. We can also regard the
MAP solution as a random variable, denoted in boldface notation γ⋆, when it is viewed as a
function of the random observation h:

γ⋆ ≜ argmax
γ∈Γ

fγ|h(γ|h) (2)
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The Bayesian Learning Framework

Data model:

Inference:

Figure: A general model underlying most inference problems. The top row illustrates the generative
model for the observations h, while the bottom row illustrates the Bayesian inference formulation for
recovering the label variable.

1

1We use bold font to describe a random variable, while regular font denotes its realization.
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Example: Linear Regression

Let us consider a feature h ∈ RM , and a linear model parameterized by wo ∈ RM , resulting in
the label γ ∈ R:

γ = hTwo + v (3)

Here, v denotes zero-mean noise, which we assume to be normally distributed v ∼ N (0, σ2
v)

with variance σ2
v > 0. Suppose we would like to predict the most likely label γ for a given

feature h. We can first evaluate the conditional pdf:

fγ|h(γ|h) =
1√
2πσ2

v

e
− 1

2σ2
v
(γ−hTwo)

2

(4)
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Example: Linear Regression

We see directly that the posterior distribution fγ|h(γ|h) is maximized whenever

(γ − hTwo)
2
= 0 and hence γ⋆ = hTwo. An alternative approach is to take the logarithm of

the posterior and find:

log fγ|h(γ|h) = log

(
1√
2πσ2

v

)
− 1

2σ2
v

(γ − hTwo)
2

(5)

Since the logarithm of a positive variable is strictly increasing, it follows that the maximizing
argument of fγ|h(γ|h) is the same as the maximizing argument of log fγ|h(γ|h), which is the

choice γ that satisfies 1
2σ2

v
(γ − hTwo)

2
= 0. It then follows that:

γ⋆ = argmax
γ∈Γ

fγ|h(γ|h) = hTwo (6)
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Limitations

In its current form, however, the framework has two limitations.

First, relation (1) and the following examples provided a rule to map a single observation
h to an estimate γ⋆ of γ. In many inference and learning settings, we will be provided
with multiple realizations {hn}Nn=1 of the random variable h, and seek to use these
aggregate realizations in generating γ⋆.

Perhaps more importantly, the resulting estimation rules are driven in large part by the
conditional probability densities (e.g., fγ|h(γ|h) when estimating γ from h). This
essentially requires full knowledge of the statistical model relating the label γ to its
feature h. For instance, in the case of the linear channel treated in the previous example,
this translates into knowledge of the channel taps contained in wo, along with the
distribution of the noise term v. In practice, we do not expect to have access to so much
knowledge, and need to estimate relevant conditional distributions directly from data. We
refer to the process of estimating models from data as “learning” and develop it from a
Bayesian perspective.
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Multiple realizations
Dealing with multiple realizations in straightforward for i.i.d. data:

f{hn}Nn=1|γ

(
{hn}Nn=1 |γ

)
(a)
=

N∏
n=1

fhn|γ (hn|γ)
(b)
=

N∏
n=1

fh|γ (hn|γ) (7)

where (a) holds by conditional independence and (b) holds by identical distribution of the
random variables hn. We can then adjust the framework (1) to include multiple observations
as follows:

γ⋆ ≜ argmax
γ∈Γ

fγ|{hn}Nn=1

(
γ| {hn}Nn=1

)
= argmax

γ∈Γ

f{hn}Nn=1|γ

(
{hn}Nn=1 |γ

)
× fγ(γ)

f{hn}Nn=1

(
{hn}Nn=1

)
= argmax

γ∈Γ
f{hn}Nn=1|γ

(
{hn}Nn=1 |γ

)
× fγ(γ)

= argmax
γ∈Γ

(
N∏

n=1

fh|γ (hn|γ)
)

× fγ(γ) (8)
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Multiple realizations
The fact that the logarithmic function is monotonically increasing ensures that:

γ⋆ = argmax
γ∈Γ

log

[(
N∏

n=1

fh|γ (hn|γ)
)

× fγ(γ)

]

= argmax
γ∈Γ

{
N∑

n=1

log fh|γ (hn|γ) + log fγ(γ)

}

= argmin
γ∈Γ

{
−

N∑
n=1

log fh|γ (hn|γ)− log fγ(γ)

}
(9)

We can normalize by the sample size N , since the minimizing argument γ⋆ is unaffected by
scaling:

γ⋆ = argmin
γ∈Γ

{
− 1

N

N∑
n=1

log fh|γ (hn|γ)−
1

N
log fγ(γ)

}
(10)
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Example: Inverting a linear regression model

We consider a binary class variable γ ∈ {+1,−1}. Suppose that the observed feature h is
normally distributed with mean that depends on the class variable γ. Specifically, we model
h ∼ N

(
wo, σ2

vIM
)
when γ = +1 and h ∼ N

(
−wo, σ2

vIM
)
when γ = −1. This relation can

be represented through the linear model:

h = γwo + v (11)

with v ∼ N (0, σ2
v). In this sense, we may view the present example as the inverse problem to

the linear regression example we previously saw. The linear relationship translates into the
conditional distribution:

fh|γ (h|γ) = 1√
(2π)Mσ2M

v

e
− 1

2σ2
v
∥h−γwo∥2

(12)
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Example: Inverting a linear regression model
Applying (10), and assuming an equal prior P {γ = +1} = P {γ = −1} = 1

2 , we obtain:

γ⋆ = arg min
γ∈±1

1

N

N∑
n=1

∥hn − γwo∥2

= arg min
γ∈±1

 1

N

N∑
n=1

∥hn∥2 − 2γ

(
1

N

N∑
n=1

hn

)T

wo + ∥γwo∥2


(a)
= arg min

γ∈±1

−2γ

(
1

N

N∑
n=1

hn

)T

wo + γ2∥wo∥2


(b)
= arg min

γ∈±1

−2γ

(
1

N

N∑
n=1

hn

)T

wo

 = sign


(

1

N

N∑
n=1

hn

)T

wo

 (13)

In this sequence of reformulations, (a) follows from the fact that 1
N

∑N
n=1 ∥hn∥2 is

independent of γ, (b) uses the fact that γ2 = 1.
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From Inference to Learning
So far, given a known model fh|γ and realizations of h, we performed inference of the label γ.
To formalized the learning process, we will assume that the conditional likelihood fh|γ (·|γ) is
parameterized by a learnable parameter w ∈ RMw and write instead fh|γ,w (·|γ,w). Under this
parameterization, learning the conditional distribution of γ given h is equivalent to learning
the parameter w that parameterizes fh|γ,w (·|γ,w).
To formulate a procedure for learning w from pairs {h,γ} we mirror the argument so far.
Suppose the model w is sampled once, yielding the realization wo. The training data
{hn,γn}Nn=1 is sampled N times, where each pair {hn,γn} is sampled from fh,γ|w (h, γ|wo).
If we suppose that feature-label pairs {hn,γn} are identically and independently distributed
after conditioning on the parameterization w, we can factorize:

f{hn,γn}Nn=1|w

(
{hn, γn}Nn=1 |w

)
(a)
=

N∏
n=1

fhn,γn|w (hn, γn|w)

(b)
=

N∏
n=1

fh,γ|w (hn, γn|w) (14)
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From Inference to Learning
We can then define the MAP estimate of the weight vector w as:

w⋆ ≜ arg max
w∈RMw

fw|{hn,γn}Nn=1

(
w| {hn, γn}Nn=1

)
= arg max

w∈RMw

f{hn,γn}Nn=1|w

(
{hn, γn}Nn=1 |w

)
× fw(w)

f{hn,γn}Nn=1

(
{hn, γn}Nn=1

)
= arg max

w∈RMw
f{hn,γn}Nn=1|w

(
{hn, γn}Nn=1 |w

)
× fw(w)

= arg max
w∈RMw

(
N∏

n=1

fh,γ|w (hn, γn|w)
)

× fw(w) (15)

Following the same argument that led to (10), we arrive at:

w⋆ = arg min
w∈RM

{
− 1

N

N∑
n=1

log fh,γ|w (hn, γn|w)−
1

N
log fw(w)

}
(16)
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Distinction between the true model and the MAP estimate

Observe that we make a deliberate distinction between the true model wo, which
parameterizes the distribution fh,γ|w (h, γ|wo) from which the samples {hn,γn}Nn=1 are
generated, and the MAP estimate w⋆, which maximizes the posterior distribution of w after
observing the samples {hn,γn}Nn=1. In general, there will be a difference between the MAP
model w⋆ and the true model wo. The expectation is that as the size of the data set N grows,
the MAP model w⋆ will become increasingly accurate and approach wo as N → ∞. Detailed
proofs of generalization are beyond the scope of this course.
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Train and Test Data

Once we have found a w⋆ based on some training set {hn, γn}Nn=1, we can then apply the
model to an unseen feature to perform approximate Bayesian inference:

γtest
⋆
≜ argmax

γ∈Γ
fγ|h,w(γ|htest, w⋆) (17)

We emphasize that (17) is only an approximate MAP estimate for the true label γtest, since it
is generated using an estimate of the posterior distribution fγ|h,w(γ|htest, w⋆) using the
learned parameterization w⋆. In general, and in particular for finite sample sizes N of the
training data, the learned parameterization w⋆ will be different from the true parameterization
wo that actually generated the data. The difference between predictions made using the true
model wo and the learned model w⋆ is known as a generalization error.
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Compact notation for feature-label pairs
As is evident from (16), during learning, we are provided with feature-label pairs {h,γ} or
their realizations {hn, γn}Nn=1. To simplify the notation, we will collect features h ∈ RMh and
labels γ ∈ RMγ into a single augmented data vector x ∈ RMh+Mγ , such that:

x ≜ col {h,γ} =

(
h
γ

)
(18)

Similarly, we will collect realizations into xn ≜ col {hn, γn}. In this manner, we can write more
compactly:

fh,γ|w (h, γ|w) = fx |w (x|w) (19)

The MAP learning problem (16) then becomes:

w⋆ = arg min
w∈RM

{
− 1

N

N∑
n=1

log fx |w (xn|w)−
1

N
log fw(w)

}
(20)
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Ridge regression for linear models
Let us consider again the linear model from previous examples.

γ = hTwo + v (21)

We can interpret wo as the realization of a random variable w, and assume that the parameter
w is independent of all other random variables. Suppose we impose a normal prior of the form
w ∼ N (0, σ2

wIM ). We continue to assume v ∼ N (0, σ2
v) and h ∼ N (0, σ2

hIM ). It then
follows that:

fw(w) =
1√

(2π)Mσ2M
w

e
− 1

2σ2
w
∥w∥2

(22)

fh,γ|w(h, γ|w) = fγ|h,w(γ|h,w)× fh|w(h|w)
(a)
= fγ|h,w(γ|h,w)× fh(h)

=
1√
2πσ2

v

e
− 1

2σ2
v
(γ−hTw)

2

× 1√
(2π)Mσ2M

h

e
− 1

2σ2
h

∥h∥2
(23)
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Ridge regression for linear models
Substituting these relations into (16), and removing constant terms independent of w, we
obtain:

w⋆ = arg min
w∈RM

{
1

2N

N∑
n=1

(
γn − hTnw

)2
+

1

2N

σ2
v

σ2
w

∥w∥2
}

(24)

which corresponds to a least-squares regression problem, where the fit of the parameter w is
evaluated by measuring the squared error of the prediction hTnw to the observation γn. In
practice, the variances σ2

v and σ2
w are unknown, and it is common to instead introduce a

hyperparameter ρ resulting in:

w⋆ = arg min
w∈RM

{
1

N

N∑
n=1

(
γn − hTnw

)2
+ ρ∥w∥2

}
(25)

The hyperparameter ρ is either fixed a priori based on an estimate of the ratio σ2
v

σ2
w
, or tuned on

a subset of the training data using cross-validation.
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Asymptotic Behavior
It is instructive to examine the asymptotic behavior of the optimal estimate (16) as the sample
size N grows. We have for all w such that fw(w) > 0:

lim
N→∞

{
− 1

N

N∑
n=1

log fx |w (xn|w)−
1

N
log fw(w)

}

= lim
N→∞

{
− 1

N

N∑
n=1

log fx |w (xn|w)
}

− lim
N→∞

{
1

N
log fw(w)

}
(a)
= lim

N→∞

{
− 1

N

N∑
n=1

log fx |w (xn|w)
}

(b)
= − Ex∼fx |w(x|wo)

{
log fx |w (x |w)

}
(26)

Here, (a) follows since fw(w) > 0 =⇒ | log fw(w)| < ∞ and hence:

lim
N→∞

{
1

N
log fw(w)

}
= 0 (27)
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Example: Mean-Square-Error (MSE) estimation
Considering the linear model from previous examples, we find from (23):

− log fh,γ|w (h, γ|w)

(23)
= − log

 1√
2πσ2

v

e
− 1

2σ2
v
(γ−hTw)

2

× 1√
(2π)Mσ2M

h

e
− 1

2σ2
h

∥h∥2


= − log

(
e
− 1

2σ2
v
(γ−hTw)

2
)
− log

 1√
2πσ2

v

× 1√
(2π)Mσ2M

h

e
− 1

2σ2
h

∥h∥2


︸ ︷︷ ︸
≜C

=
1

2σ2
v

(
γ − hTw

)2
+ C (28)

Since 1
σ2
v
and C are independent of w, we conclude from (26) after shifting and scaling:

wo = argmin
w

1

2
E
(
γ − hTw

)2
(29)
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Example: Mean-Square-Error (MSE) estimation
Since the risk function in this case is quadratic in w, we can obtain a closed-form expression
for the minimizer wo. Indeed, after differentiating, we find:

∇
(
1

2
E
(
γ − hTw

)2)
= −Eγh︸︷︷︸

≜rγh

+EhhT︸ ︷︷ ︸
≜Rh

w = −rγh +Rhw (30)

At wo, this derivative must be equal to zero, and hence after rearranging:

wo = R−1
h rγh (31)

We can verify that the minimizing argument wo of the MSE risk (29) indeed corresponds to
the true model parameters in (3). To this end, note from

γ = hTwo + v (32)

that if we multiply by h from the left and take expectations, we get:

rγh = Rhw
o (33)
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Empirical and expected risk minimization for single agent learning

We have hence motivated the following optimization problems as rigorous learning
frameworks.

General empirical risk minimization problems take the form:

w⋆ = argmin
w

1

N

N∑
n=1

Q(w;xn) +R(w) (34)

Here, Q(w;xn) denotes the loss of the parameterization w on the sample xn. The term
R(w) corresponds to a regularization term, which is independent of the data xn, but may
depend on the sample size N .

(Expected) risk minimization problems take the form:

wo = argmin
w
ExQ(w;x) (35)
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Extension to Multi-Agent Systems

To this end, we consider a collection of K agents. Each agent has sensing capabilities, and
collects a local dataset {hk,n,γk,n}Nn=1. For simplicity, we assume that the sample size N is
common to all agents. Each pair of samples is sampled independently and identically from the
distribution:

fhk,n,γk,n|wk
(h, γ|wo) = fh,γ|w (h, γ|wo) (36)

Now assume first that the different agents are disconnected, with no way to exchange
information among them. In that case, it is reasonable to formulate independent local learning
problems:

w⋆
k ≜ arg max

w∈RM
fw|{hk,n,γk,n}Nn=1

(
w| {hk,n, γk,n}Nn=1

)
(37)

Stefan Vlaski and Ali H. Sayed Lecture 1: Foundations IEEE ICASSP 2024 Short Course 30 / 86



Extension to Multi-Agent Systems
Following the argument same argument as before, we arrive at the equivalent formulation:

w⋆
k = arg min

w∈RM

{
− 1

N

N∑
n=1

log fh,γ|w (hk,n, γk,n|w)−
1

N
log fw(w)

}
= arg min

w∈RM
Jk(w) (38)

where we defined:

Jk(w) ≜ − 1

N

N∑
n=1

log fh,γ|w (hk,n, γk,n|w)−
1

N
log fw(w) (39)

Through the agent subscript k we emphasize here that because the local samples
{hk,n,γk,n}Nn=1 are distinct, this implies that Jk(·) as well as the resulting optimal models w⋆

k

are distinct as well. While we can claim local optimality of each model w⋆
k in the sense

of (38), this model is making use only of the data available to agent k.
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Extension to Multi-Agent Systems

As an alternative to (38), we can instead consider the global learning problem:

w⋆ ≜ arg max
w∈RM

f
w|{{hk,n,γk,n}Nn=1}K

k=1

(
w|
{
{hk,n, γk,n}Nn=1

}K

k=1

)
(40)

As long as the samples {hk,n,γk,n}Nn=1 are also mutually independent between agents after
conditioning on w, we can factorize the conditional likelihoods:

w⋆ ≜ arg max
w∈RM

f
w|{{hk,n,γk,n}Nn=1}K

k=1

(
w|
{
{hk,n, γk,n}Nn=1

}K

k=1

)
= arg max

w∈RM
f{{hk,n,γk,n}Nn=1}K

k=1
|w

({
{hk,n, γk,n}Nn=1

}K

k=1
|w
)
× fw(w)

= arg max
w∈RM

(
K∏
k=1

f{hk,n,γk,n}N

n=1
|w

(
{hk,n, γk,n}Nn=1 |w

))
× fw(w) (41)
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Aggregate Optimization Problem
After taking logarithms, and normalizing, we find:

w⋆ = argmin
w

{
− 1

KN

K∑
k=1

N∑
n=1

log fh,γ|w (hk,n, γk,n|w)−
1

KN
log fw(w)

}

= argmin
w

1

K

K∑
k=1

Jk(w)

= J(w) (42)

where we defined:

J(w) =
1

K

K∑
k=1

Jk(w) (43)

This problem is known as an aggregate optimization problem or consensus optimization
problem for the collection of agents 1, . . . ,K.
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Example: Least-Squares Fusion

We specialize the discussion again to the least-squares problem. For the local models we would
have:

w⋆
k = arg min

w∈RM

{
1

2N

N∑
n=1

(
γk,n − hTk,nw

)2
+

ρ

2
∥w∥2

}
(44)

where we defined ρ = 1
N

σ2
v

σ2
w
for notational convenience. Since (44) is quadratic over w, we can

determine a closed-form expression for w⋆
k by differentiating:

− 1

N

N∑
n=1

γk,nhk,n +

(
1

N

N∑
n=1

hk,nh
T
k,n

)
w⋆
k + ρw⋆

k = 0 (45)
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Example: Least-Squares Fusion

After grouping terms:

w⋆
k =

(
1

N

N∑
n=1

hk,nh
T
k,n + ρI

)−1(
1

N

N∑
n=1

γk,nhk,n

)
= (Hk + ρI)−1dk (46)

We defined for compactness:

Hk ≜
1

N

N∑
n=1

hk,nh
T
k,n (47)

dk ≜
1

N

N∑
n=1

γk,nhk,n (48)
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Example: Least-Squares Fusion

For the aggregate problem (43) we can find analogously:

w⋆ =

(
1

KN

K∑
k=1

N∑
n=1

hk,nh
T
k,n +

ρ

K
I

)−1(
1

KN

K∑
k=1

N∑
n=1

γk,nhk,n

)

=
(
H +

ρ

K
I
)−1

d (49)

where we defined:

H =
1

KN

K∑
k=1

N∑
n=1

hk,nh
T
k,n =

1

K

K∑
k=1

Hk (50)

d =
1

KN

K∑
k=1

N∑
n=1

γk,nhk,n =
1

K

K∑
k=1

dk (51)
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Exchanging Processed Quantities
Returning to the quadratic problem, note that:(

H +
ρ

K
I
)
w⋆ = d =

1

K

K∑
k=1

dk
(46)
=

1

K

K∑
k=1

(Hk + ρI)w⋆
k (52)

It then follows that w⋆ can be evaluated equivalently as:

w⋆ =

(
1

K

K∑
k=1

Hk +
ρ

K
I

)−1(
1

K

K∑
k=1

(Hk + ρI)w⋆
k

)
(53)

This means that rather than communicate raw data hk,n at the fusion center, and
subsequently compute w⋆ via (49), we can instead locally compute Hk and w⋆

k, and transmit
only these processed quantities to the fusion center, and then apply (53).

The first approach requires the communication of K(M + 1)N scalar quantities.

The second approach requires K times the exchange of a matrix of size M2 and a vector
of size M , hence a cost of K(M + 1)M .
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Recap and Outlook
We used Bayesian techniques to motivate empirical and expected risk minimization
problems of the form:

w⋆ = argmin
w

N∑
n=1

Q(w;xn) +R(w) ≜ argmin
w

J(w) (54)

wo = argmin
w
ExQ(w;x) ≜ argmin

w
J(w) (55)

We also saw how same line of reasoning motivates aggregate or consensus optimization
problems of the form:

J(w) =
1

K

K∑
k=1

Jk(w) (56)

In the case of linear models with Gaussian noise, this led to quadratic problems where we
could do all calculations in closed-form.

For more general objective functions J(w), we will have to appeal to iterative methods.
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Deterministic Optimization

We are interested in optimizing a general objective:

w⋆ ≜ argmin
w

J(w) (57)

We need to assume some regularity conditions. For the purposes of this course, we will
focus of ν-strongly convex objectives with δ-Lipschitz gradients.

It is possible to relax both the convexity and smoothness conditions on the risks, but
many of the themes and conclusions will continue to hold. So to avoid unnecessary
complications, and focus on key ideas, we will work with convex and smooth objectives.
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ν-Strong Convexity

We will say that the risk is ν-strongly convex if:

J(w2) ≥ J(w1) +∇J(w)T(w2 − w1) +
ν

2
∥w2 − w1∥2 (58)

for some positive parameter ν ≥ 0. Note that strong convexity is a stronger condition than
convexity, and in particular we recover convexity when ν = 0. Now suppose we have found, by
whatever means, a point satisfying the first-order condition ∇J(w⋆) = 0. Then, it follows
from (58) that for any w ∈ dom J :

J(w) ≥ J(w⋆) +∇J(w⋆)T(w − wo) +
ν

2
∥w − wo∥2

= J(wo) +
ν

2
∥w − wo∥2 (59)

Hence, wo is the unique minimizing argument of J(w).
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δ-Lipschitz Gradients

We will say that J(w) is smooth if it satisfies:

J(w2) ≤ J(w1) +∇J(w1)
T(w2 − w1) +

δ

2
∥w2 − w1∥2 (60)

Condition (60) is analogous to (58), except that now we impose an upper bound on the
growth above the tangent hyperplane, where δ controls the rate of growth. This implies the
statement:

∥∇J(w2)−∇J(w1)∥ ≤ δ∥w2 − w1∥ (61)

In other words, the smoothness condition (60) translates into a Lipschitz condition on the
gradients of J(w).
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Gradient Descent
We can then pursue

w⋆ ≜ argmin
w

J(w) (62)

by iterating from some initial point w0 ∈ RM :

wi = wi−1 − µ∇J(wi−1) (63)

which is known as the gradient descent algorithm. The name comes from the fact that:

J(wi)
(60)

≤ J(wi−1) +∇J(wi−1)
T(wi − wi−1) +

δ

2
∥wi − wi−1∥2

(63)
= J(wi−1) +∇J(wi−1)

T(−µ∇J(wi−1)) +
δ

2
∥µ∇J(wi−1)∥2

= J(wi−1)− µ

(
1− µ

δ

2

)
∥∇J(wi−1)∥2

(a)

≤ J(wi−1) (64)
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Visualization of Gradient Descent

Figure: The panel on the left shows the mechanics of one update step where wi−1 is updated in the
direction of the minimizer w⋆. The panel on the right shows the result of several successive steps with
the iterates approaching w⋆.
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Example: Logistic Regression

Quadratic loss functions are not appropriate when the label γ in an inference problem takes
discrete values γ = ±1. In this case, we a more appropriate choice is the regularized logistic
risk function defined by

J(w) =
ρ

2
∥w∥2 +

1

N

N∑
n=1

ln
(
1 + e−γnhT

nw
)

(65)

for which

∇J(w) = ρw − 1

N

N∑
n=1

γnhn

1 + eγnhT
nw

(66)
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Example: Logistic Regression

The gradient-descent recursion (63) in this case leads to

wi = (1− µρ)wi−1 + µ

(
1

N

N∑
n=1

γnhn

1 + eγnh
T
nwi−1

)
, i ≥ 0 (67)

One can interpret the logistic risk function as arising from a Bayes’ optimal estimate for w
under the statistical model:

fγ|h,w(γ|h,w) =
1

1 + e−γhTw
(68)

with a Gaussian prior on w, though the details of this derivation are not relevant to this course.
Once we have found w⋆, we can then perform inference on unlabelled data h by computing
sign

(
hTw⋆

)
as illustrated on the next slide. Features lying on one side of the hyperplane

whose normal direction is w⋆ belong to class +1 while the other features belong to class −1.
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Example: Logistic Regression

Figure: A logistic regression problem, with separating hyperplane defined by the parameter w⋆.
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Example: Logistic Regression

Figure: The left figure shows the logistic function (68) when γ = +1 as a function of x = hTw, the
right figure shows the same for γ = −1. This model imposes that it is likely that γ and hTw have the
same sign, with the likelihood increasing with the absolute value of hTw.
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Convergence Analysis

Convergence Of Gradient-Descent

Consider the gradient-descent recursion (63) where J(w) is a ν-strongly convex function with
δ-Lipschitz gradients. Introduce the error vector w̃i = w⋆ − wi, which measures the difference
between the i−th iterate and the global minimizer of J(w). If the step-size µ satisfies:

0 < µ < 2ν/δ2 (69)

then wi converges exponentially fast to w⋆ in the sense that

∥w̃i∥2 ≤ λ ∥w̃i−1∥2, i ≥ 0 (70)

where λ = 1− 2µν + µ2δ2 ∈ [0, 1). It also holds that the risk value converges exponentially
fast as follows

J(wi)− J(w⋆) ≤ δλi∥w̃0∥2 = O(λi) (71)
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Rate of Convergence

Figure: Plot of the function λ(µ) = 1− 2νµ+ µ2δ2. It shows that the function λ(µ) assumes values
below one in the range 0 < µ < 2ν/δ2.
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Transient and steady-state error
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Figure: Learning curves J(wi) relative to the minimum risk value J(w⋆) in linear scale (on the left) and
in normalized logarithmic scale (on the right). (Bottom) Limiting value of wi, which tends to w⋆.
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Recap and Outlook

We have seen how the gradient algorithm can iteratively minimize general objective
functions.

However, the recursions relied on exact gradients. In practice, this can be unavailable or
costly, particularly in many applications of multi-agent systems.

We will now see how we can tackle these issues with stochastic gradient algorithms.
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Motivation for Stochastic Gradients

We will continue to study optimization problems of the form:

min
w∈RM

J(w) (72)

In the previous section, we examined the performance of the gradient-descent algorithm, which
takes the form:

wi = wi−1 − µ∇J(wi−1) (73)

In practice, many times computing ∇J(wi−1) is costly or infeasible.
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Example: Expected Risk Minimization
Suppose the risk J(w) is defined as the expected value of some loss function Q(w;x) over the
distribution of the data x:

J(w) ≜ ExQ(w;x) (74)

It is clear that the evaluation of J(w) requires knowledge of the distribution of x, as well as
the evaluation of its gradient vector since:

∇J(w) = ∇ (ExQ(w;x)) (75)

Suppose at time i, we observe a single sample xi from the distribution of x. Then, we can
construct the following instantaneous approximation for the gradient vector:

∇̂J(w;xi) ≜ ∇Q(w;xi) (76)

and use it in (73):

wi = wi−1−µ∇̂J(wi−1;xi) = wi−1−µ∇Q(wi−1;xi) (77)

Observe that the stochastic gradient approximation ∇Q(wi−1;xi) is a function of the random
variable xi, and is hence random itself.
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Example: Empirical Risk Minimization

A second class of problems that appear in learning contexts are empirical risk minimization
problems of the form:

J(w) ≜
1

N

N∑
n=1

Q(w;xn) (78)

where the set of points {xn}Nn=1 corresponds to a batch of N independent realizations of the
random variable x. In contrast to the previous example, where evaluation of the gradient
∇J(w) is infeasible, for empirical risk minimization problems, it is in principle possible to
iterate:

wi = wi−1 − µ∇J(wi−1) = wi−1 −
µ

N

N∑
n=1

∇Q(wi−1;xn) (79)

The drawback now is that every iteration requires the evaluation of N gradients of the risk
∇Q(wi−1;xn). This results in a costly procedure, especially in large-scale settings, where the
sample size N is large.
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Example: Empirical Risk Minimization
We may motivate a stochastic approximation for the true gradient appearing in (79) as
follows. At any time i, we sample from the set of data points {xn}Nn=1 uniformly at random.
We may model this procedure by defining a random index ni, with uniform distribution:

ni =


1, with probability 1

N ,

2, with probability 1
N ,

...

N, with probability 1
N .

(80)

Then xni denotes the sample picked randomly from {xn}Nn=1 at time i. We use this sample to
construct a stochastic approximation for the gradient as

∇̂J(w;xni) ≜ ∇Q(w;xni) (81)

This construction results in a stochastic variant of recursion (79):

wi = wi−1−µ∇Q(wi−1, xni) (82)
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Example: Empirical Risk Minimization

Note further that if we let xemp
i ≜ xni , it follows that:

J(w) ≜
1

N

N∑
n=1

Q(w;xn) = Exemp
i

Q(w;xemp
i ) = ExempQ(w;xemp) (83)

In other words, the empirical risk minimization problem (78) is a special case of the expected
risk minimization problem (74), where we define a new random variable xemp ≜ xn, which
follows a uniform empirical distribution over the sample batch of data {xn}Nn=1. Note that for
any finite N , there will be a difference between x, the underlying random variable that led to
the batch of samples {xn}Nn=1, and xemp, which is sampled from {xn}Nn=1.
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Stochastic Gradient Approximations

Given a risk function J(w) we denote by ∇̂J(w) a stochastic gradient approximation for the

true gradient ∇J(w) if ∇̂J(w) can be evaluated solely from data available to the algorithm
and

∇̂J(w) ≈ ∇J(w) (84)

in some sense. On occasion, we may wish to make precise the exact data used to compute
∇̂J(w), in which case we may for example write:

∇̂J(w;xi) ≈ ∇J(w) (85)

to emphasize that ∇̂J(w;xi) is constructed based on a realization of the random variable xi.

As a general rule, we will employ ∇̂J(w) whenever the data used to construct the gradient
approximation is either clear from the context (to lighten the notation), or irrelevant to the
discussion (to keep the results general).
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Gradient Noise
Motivated by the discussion so far, we will now study generic expected risk minimization
problems of the form:

argmin
w∈RM

J(w) ≜ argmin
w∈RM

ExQ(w;x) (86)

with the understanding that this formulation covers empirical risk minimization problems as
laid out in the previous example. We will consider a stochastic gradient algorithm with a
generic gradient approximation:

wi = wi−1−µ∇̂J(wi−1) (87)

It is instructive to reformulate the recursion as (see Fig. 59):

wi = wi−1−µ∇J(wi−1)− µ si(wi−1) (88)

in terms of the gradient noise term defined by

si(wi−1) = ∇̂J(wi−1)−∇J(wi−1) (89)
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Stochastic Gradient Algorithms as Perturbed Systems
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Gradient Noise Modeling Conditions

The gradient approximations ∇̂J(wi−1) are unbiased conditioned on the iterate wi−1.
Specifically:

E
{
∇̂J(wi−1)|wi−1

}
= ∇J(wi−1) ⇐⇒ E {si(wi−1)|wi−1} = 0 (90)

Unbiased gradient estimates ensure that the gradient approximation ∇̂J(wi−1) is, on average,
a good estimate for the descent direction. Unbiased estimates are good estimates, but only if
their variance is bounded. We hence impose an additional condition:

E
{
∥si(wi−1)∥2|wi−1

}
≤ α2∥∇J(wi−1)∥2 + β2∥wo −wi−1 ∥2

+ γ2 (J(wi−1)− Jo) + σ2 (91)

This second condition imposes a relative bound on the variance of the gradient approximation
because we allow the right-hand side of (91) to grow with various measures of suboptimality.
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On the generality of condition (91)
We note that the variance condition (91) is deliberately chosen to be general by allowing for
relative components proportional to ∥∇J(wi−1)∥2, ∥wo −wi−1 ∥2, and J(wi−1)− Jo through
the constants α, β and γ, respectively. It is useful to observe that for objectives with
δ-Lipschitz gradients, it holds that:

1

2δ
∥∇J(wi−1)∥2 ≤ J(wi−1)− Jo ≤ δ

2
∥wo −wi−1 ∥2 (92)

As such, any gradient approximation that satisfies (91) will also satisfy:

E
{
∥si(wi−1)∥2|wi−1

}
≤ β2∥wo −wi−1 ∥2 + σ2 (93)

for some β2 that is suitably adjusted. For this reason, at several points in our presentation,
and in order to lighten the notation, we will set α = γ = 0 and work with the simplified
condition (93). Nevertheless, allowing for more granular characterization of the relative
components in (91) is useful depending on the setting, so we allow for it when it doesn’t result
in unnecessary complications.
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Elementary Gradient Approximations

Perhaps the most commonly employed gradient approximation is the one obtained from the
expression ∇J(w) ≜ ∇{ExQ(w;x)} by dropping the expectation and using the loss value at
the sample xi available at time i. This results in:

∇̂J
ele
(w) ≜ ∇Q(w;xi) (94)

We will be referring to such approximations as elementary stochastic gradient approximations.
They are the most common and simplest constructions, and we will see that many more
elaborate constructions can be “built” from elementary gradient approximations. When we
wish to emphasize the fact that the construction is of the elementary type, or to distinguish it
from other constructions, we will attach the superscript “ele” to the relevant quantities. For

example, ∇̂J
ele
(w) refers to the elementary gradient approximation constructed according

to (94), while selei (w) refers to the resulting gradient noise with parameters α2
ele, β

2
ele, γ

2
ele, σ

2
ele.

When the context is clear, or we wish to preserve generality of the statements, we will omit
“ele”.
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Example: Mean-square error learning
Let us consider the linear regression model:

γ = hTwo + v (95)

where h ∈ RM denotes the regressor and γ denotes the observation. The measurement noise
is denoted by v and assumed to be zero-mean and independent of h. Given observations
x ≜ col{h,γ}, we may find the unknown model wo by solving:

wo = argmin
w∈RM

1

2
E∥γ − hTw∥2 (96)

Let Q(w;x) = Q(w;h,γ) = 1
2∥γ − hTw∥2. By differentiating, we find:

∇J(w) = E
{
−h

(
γ − hTw

)}
= −rhγ +Rhw (97)

where we defined rhγ = Ehγ and Rh ≜ EhhT.
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Example: Mean-square error learning

We can then construct:

∇̂J(w) =∇Q(w;xi) = −hi

(
γi − hT

i w
)
= −hiγi + hih

T
i w (98)

so that the gradient noise si(w) is given by

si(w) = −hiγi + hih
T
i w + rhγ −Rhw (99)

It can be verified that si(wi−1) is zero-mean and satisfies the variance bound with
α2 = γ2 = 0 and:

β2 ≜ E
∥∥∥hih

T
i −Rh

∥∥∥2 (100)

σ2 ≜ σ2
vTr (Rh) (101)
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Example: Logistic Regression

In this case, the labels γ are sampled from a discrete distribution, say γ = ±1, while

Q(w;hi,γi) ≜ ln
(
1 + e−γih

T
i w
)
+

ρ

2
∥w∥2 (102)

J(w) ≜ EQ(w;hi,γi) = E ln
(
1 + e−γih

T
i w
)
+

ρ

2
∥w∥2 (103)

Then, it follows that:

∇Q(w;hi,γi) = − γihi

1 + eγih
T
i w

+ ρw

∇J(w) = − E
{

γihi

1 + eγih
T
i w

}
+ ρw (104)

Hence, we can construct ∇̂J(w) = ∇Q(w;hi,γi) and immediately verify the zero-mean
condition (90).
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Example: Logistic Regression

For the variance bound, we can verify that:

E
{
∥ si(wi−1)∥2|wi−1

}
≤ E∥hi∥2 = Tr (Rh) (105)

where we defined Rh = EhhT. Hence, we know that the elementary logistic regression
recursion satisfies the gradient noise conditions with α2 = β2 = γ2 = 0 and σ2 = Tr (Rh).
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Variants of Stochastic Gradient Descent
We might receive multiple samples at a time, or sometimes receive no samples at all.

The stochastic approximation framework is flexible to cover these variants.

wk,i = wk,i−1 −
µ

3

3∑
b=1

∇Q(wk,i−1;xk,i,b) wk,i =

{
wk,i−1 −µ

π∇Q(wk,i−1;xk,i) w.p. π,

wk,i−1 w.p. 1− π.
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Mini-Batch SGD
Suppose that instead of being provided with a single data point xi at any given time i, we
have access to B independent samples {xb,i}Bb=1. We can then compute:

∇̂J
(
wi−1; {xb,i}Bb=1

)
≜

1

B

B∑
b=1

∇Q(wi−1;xb,i) (106)

It is straightforward to verify that:

E
{
∇̂J(wi−1; {xb,i}Bb=1)|wi−1

}
= ∇J(wi−1) (107)

Using the independence of samples, we have for the resulting gradient noise process:

E
{
|∥si(wi−1)∥2|wi−1

}
≤ α2

B∥∇J(wi−1)∥2 + β2
B∥wo −wi−1 ∥2 + γ2B (J(wi−1)− Jo) + σ2

B

(108)

with

α2
B ≜

α2
ele

B
, β2

B ≜
β2
ele

B
, γ2B ≜

γ2ele
B

, σ2
B ≜

σ2
ele

B
(109)
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Stochastic Gradient with Missing Samples
We define an i.i.d. Bernoulli random indicator variable:

Ii =

{
1, with probability π,

0, otherwise.
(110)

where Ii indicates whether we receive a sample xi at time i or not. We can then construct:

∇̂J(w) ≜


1

π
∇Q(w;xi), if Ii = 1,

0, otherwise.
(111)

Note that in the case when data is available, the gradient approximation 1
π∇Q(w;xi) is scaled

by 1
π . And since 0 < π ≤ 1, this results in larger steps being taken when data is available to

compensate for the fact that with probability 1− π, no update occurs. This scaling ensures
that we continue to have an unbiased approximation:

E∇̂J(w) = E {∇Q(w;xi)} = ∇J(w) (112)
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Stochastic Gradient with Missing Samples

For the gradient noise variance, we have:

E
{
|∥si(wi−1)∥2|wi−1

}
≤ α2

asy∥∇J(wi−1)∥2 + β2
asy∥wo −wi−1 ∥2 + γ2asy (J(wi−1)− Jo) + σ2

asy (113)

with:

α2
asy ≜

α2
ele + 1− π

π
; β2

asy ≜
β2
ele

π
; γ2asy ≜

γ2ele
π

; σ2
asy ≜

σ2
ele

π
(114)
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Convergence Guarantee of Stochastic Gradient Algorithms

Mean-squared deviation of stochastic gradient algorithms

Let the risk function J(w) be ν-strongly convex with δ-Lipschitz gradients. Suppose that we

employ a gradient approximation ∇̂J(·) satisfying conditions (90) and (91) with constants
α2, β2, γ2, σ2 ≥ 0. Then, the mean-squared deviation Ew̃i ≜ E∥wo −wi ∥2 of the iterates
generated by the stochastic gradient algorithm (87) satisfies:

E∥w̃i∥2 ≤ λE∥w̃i−1∥2 + µ2σ2 (115)

where we defined

λ ≜ 1− 2µν + µ2

(
(1 + α2)δ2 + β2 + γ2

δ

2

)
(116)
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Convergence Guarantee of Stochastic Gradient Algorithms

Mean-squared deviation of stochastic gradient algorithms (2)

Moreover, for sufficiently small step-sizes:

µ ≤ ν

(1 + α2)δ2 + β2 + γ2 δ
2

(117)

it holds that λ < 1 and we can iterate (115) to find:

E∥w̃i∥2 ≤ λi∥w̃0∥2 +
µσ2

ν
(118)

For the excess risk, we obtain:

EJ(wi)− J(wo) ≤ λi

(
δ∥w̃0∥2

2

)
+

µδσ2

2ν
(119)
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Transient and Steady-State Error

We observe that the theorem quantifies both the transient and steady-state behavior of the
mean-squared deviation E∥w̃i∥2 and the excess-risk EJ(wi)− J(wo). The steady-state
component of an error refers to the part of the error which remains as i → ∞. For the MSD
in (118), this corresponds to:

lim sup
i→∞

E∥w̃i∥2 =
µσ2

ν
= O(µ) (120)

while the transient component corresponds to λi∥w̃0∥2. Similarly, for the excess risk, we find
in steady-state:

lim sup
i→∞

EJ(wi)− J(wo) =
µδσ2

2ν
= O(µ) (121)

and identify the transient component as λi
(
δ∥w̃0∥2

2

)
.
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Alternative Metrics: Iteration Complexity

The iteration complexity of an algorithm is defined as the number of iterations needed for its
error to fall below a specified threshold ϵ. We can readily obtain iteration complexities from
the characterizations (118) and (119) of the MSD and excess risk respectively. We will
illustrate this for the MSD — the argument for the excess risk is analogous. Our objective is
to determine the number of iterations io needed so that:

E∥w̃io∥2 ≤ ϵ (122)

We can find the IR from (118) by appropriately choosing the step-size µ:

io ≥ 2σ2

ϵ
ln

(
1

2ϵ∥w̃0∥2
)

(123)
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Alternative Metrics: Expected Regret

A second commonly encountered metric for the performance of online learning algorithms is
the expected regret, defined the cumulative excess risk encountered up to time T :

RegretT ≜
T∑
i=1

EJ(wi)− J(wo) (124)

By suitably choosing the step-size, we can find the expected regret from (119) to be:

T∑
i=1

(EJ(wi)− J(wo)) = O
(√

T
)

(125)
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Case Study: Mean-Square Error
We illustrate the flexibility of the theorem in combination with the stochastic gradient
approximation framework in this chapter by developing a number of variants of the stochastic
gradient algorithm along with the corresponding performance bounds. First, let us recall the
mean-square error problem, which is given by:

J(w) =
1

2
E∥γ − hTw∥2 (126)

Given a single pair of observations {γi,hi}, we can construct the elementary gradient
approximation:

∇̂J
ele
(wi−1) = ∇̂Q(wi−1;hi,γi) = −hi

(
γi − hT

i wi−1

)
(127)

The resulting stochastic gradient algorithm amounts to:

wele
i = wele

i−1−µ∇̂J
ele
(wele

i−1) = wele
i−1+µhi

(
γi − hT

i wele
i−1

)
(128)
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Elementary Gradient Approximations

We already computed the resulting gradient noise constants in a previous example to be

β2 = E
∥∥hih

T
i −Rh

∥∥2 and σ2 = σ2
vTr (Rh) with α2 = γ2 = 0. To find the strong-convexity

and Lipschitz parameters ν and δ, we can differentiate (126) twice and find ν = λmin (Rh)
and δ = λmax (Rh). From our convergence bounds, we can then conclude directly that:

E

∥∥∥wo −wele
i

∥∥∥2 ≤ λi
ele∥w̃0∥2 +

µσ2
vTr (Rh)

λmin(Rh)
(129)

where:

λele ≜ 1− 2µλmin (Rh) + µ2

(
E

∥∥∥hih
T
i −Rh

∥∥∥2 + λmax (Rh)

)
(130)
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Learning Dynamics of Elementary Stochastic Gradient
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Mini-Batch Gradient Approximations
If we are instead provide with a mini-batch of observations {hb,i,γb,i}Bb=1 at time i, we can
construct:

∇̂J
B
(wi−1) =

1

B

B∑
b=1

∇Q(wi−1;hb,i,γb,i) = −hb,i

(
γb,i − hT

b,iwi−1

)
(131)

The resulting mini-batch stochastic gradient algorithm amounts to:

wB
i = wB

i−1−µ∇̂J
B
(wB

i−1) = wB
i−1+

µ

B

B∑
b=1

hb,i

(
γb,i − hT

b,iw
B
i−1

)
(132)

We know from (109) that:

β2
B =

β2

B
=
E
∥∥hih

T
i −Rh

∥∥2
B

(133)

σ2
B =

σ2

B
=

σ2
vTr (Rh)

B
(134)
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Mini-Batch Gradient Approximations

We can then conclude again from (118):

E
∥∥wo −wB

i

∥∥2 ≤ λi
B∥w̃0∥2 +

µσ2
vTr (Rh)

Bλmin(Rh)
(135)

where:

λB ≜ 1− 2µλmin (Rh) + µ2

(
E
∥∥hih

T
i −Rh

∥∥2
B

+ λmax (Rh)

)
(136)
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Learning Dynamics of Mini-Batch Gradient Approximations
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Stochastic Gradients with Missing Samples
If we are provided with a pair of observations {hi,γi} only with probability 0 < π ≤ 1, we can
construct:

∇̂J
asy

(wi−1) ≜


−1

π
hi

(
γi − hT

i wi−1

)
, with prob. π,

0, otherwise.
(137)

Then, the resulting stochastic gradient algorithm is given by:

wasy
i =

wasy
i−1+

1

π
hi

(
γi − hT

i wasy
i−1

)
, with prob. π,

wasy
i−1, otherwise.

(138)

with gradient noise constants modified from those of the elementary approximation via (114):

β2
asy =

β2

π
=
E
∥∥hih

T
i −Rh

∥∥2
π

(139)

σ2
asy =

σ2

π
=

σ2
vTr (Rh)

π
(140)

Stefan Vlaski and Ali H. Sayed Lecture 1: Foundations IEEE ICASSP 2024 Short Course 82 / 86



Stochastic Gradients with Missing Samples

Hence, we find from (118):

E∥wo −wasy
i ∥2 ≤ λi

asy∥w̃0∥2 +
µσ2

vTr (Rh)

πλmin(Rh)
(141)

where:

λasy ≜ 1− 2µλmin (Rh) + µ2

(
E
∥∥hih

T
i −Rh

∥∥2
π

+ λmax (Rh)

)
(142)
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Performance of Stochastic Gradients with Missing Samples
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Conclusion

We saw how:
▶ Multi-agent learning problems naturally lead to individual and aggregate risk minimization

problems.
▶ How stochastic gradient algorithms can solve these risk minimization problems with

performance generally limited by a trade-off between quality of gradient approximation, rate
of convergence and steady-state error.

Moving forward, we will develop multi-agent learning algorithms that allow agents to
collaboratively learn better/faster/more efficiently than any individual agent.

▶ Next lecture we will focus on fusion-center based approaches.
▶ From tomorrow, we will look at decentralized architectures.
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